Suppr超能文献

大肠杆菌同时利用葡萄糖、木糖和阿拉伯糖生产(R)-3-羟基丁酸的培养策略。

Cultivation strategies for production of (R)-3-hydroxybutyric acid from simultaneous consumption of glucose, xylose and arabinose by Escherichia coli.

作者信息

Jarmander Johan, Belotserkovsky Jaroslav, Sjöberg Gustav, Guevara-Martínez Mónica, Pérez-Zabaleta Mariel, Quillaguamán Jorge, Larsson Gen

机构信息

School of Biotechnology, Division of Industrial Biotechnology, KTH Royal Institute of Technology, SE 106 91, Stockholm, Sweden.

Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia.

出版信息

Microb Cell Fact. 2015 Apr 11;14:51. doi: 10.1186/s12934-015-0236-2.

Abstract

BACKGROUND

Lignocellulosic waste is a desirable biomass for use in second generation biorefineries. Up to 40% of its sugar content consist of pentoses, which organisms either take up sequentially after glucose depletion, or not at all. A previously described Escherichia coli strain, PPA652ara, capable of simultaneous consumption of glucose, xylose and arabinose was in the present work utilized for production of (R)-3-hydroxybutyric acid (3HB) from a mixture of glucose, xylose and arabinose.

RESULTS

The Halomonas boliviensis genes for 3HB production were for the first time cloned into E. coli PPA652ara, leading to product secretion directly into the medium. Process design was based on comparisons of batch, fed-batch and continuous cultivation, where both excess and limitation of the carbon mixture was studied. Carbon limitation resulted in low specific productivity of 3HB (<2 mg g(-1) h(-1)) compared to carbon excess (25 mg g(-1) h(-1)), but the yield of 3HB/cell dry weight (Y3HB/CDW) was very low (0.06 g g(-1)) during excess. Nitrogen-exhausted conditions could be used to sustain a high specific productivity (31 mg g(-1) h(-1)) and to increase the yield of 3HB/cell dry weight to 1.38 g g(-1). Nitrogen-limited fed-batch process design led to further increased specific productivity (38 mg g(-1) h(-1)) but also to additional cell growth (Y3HB/CDW=0.16 g g(-1)). Strain PPA652ara did under all processing conditions simultaneously consume glucose, xylose and arabinose, which was not the case for a reference wild type E. coli, which also gave a higher carbon flux to acetic acid.

CONCLUSIONS

It was demonstrated that by using E. coli PPA652ara, it was possible to design a production process for 3HB from a mixture of glucose, xylose and arabinose where all sugars were consumed. An industrial 3HB production process is proposed to be divided into a growth and a production phase, and nitrogen depletion/limitation is a potential strategy to maximize the yield of 3HB/CDW in the latter. The specific productivity of 3HB reported here from glucose, xylose and arabinose by E. coli is further comparable to the current state of the art for production from glucose sources.

摘要

背景

木质纤维素废料是用于第二代生物精炼厂的理想生物质。其糖含量中高达40%由戊糖组成,而生物体要么在葡萄糖耗尽后依次利用这些戊糖,要么根本不利用。在本研究中,利用先前描述的能够同时消耗葡萄糖、木糖和阿拉伯糖的大肠杆菌菌株PPA652ara,从葡萄糖、木糖和阿拉伯糖的混合物中生产(R)-3-羟基丁酸(3HB)。

结果

首次将玻利维亚嗜盐单胞菌的3HB生产基因克隆到大肠杆菌PPA652ara中,从而使产物直接分泌到培养基中。工艺设计基于分批培养、补料分批培养和连续培养的比较,研究了碳源混合物的过量和限量情况。与碳源过量(25 mg g⁻¹ h⁻¹)相比,碳源限量导致3HB的比生产率较低(<2 mg g⁻¹ h⁻¹),但在碳源过量期间,3HB/细胞干重的产率非常低(0.06 g g⁻¹)。氮耗尽条件可用于维持高比生产率(31 mg g⁻¹ h⁻¹),并将3HB/细胞干重的产率提高到1.38 g g⁻¹。氮限量补料分批工艺设计导致比生产率进一步提高(38 mg g⁻¹ h⁻¹),但也导致额外的细胞生长(3HB/细胞干重 = 0.16 g g⁻¹)。在所有处理条件下,PPA652ara菌株均能同时消耗葡萄糖、木糖和阿拉伯糖,而对照野生型大肠杆菌则不然,其向乙酸的碳通量也更高。

结论

结果表明,利用大肠杆菌PPA652ara,有可能设计出一种从葡萄糖、木糖和阿拉伯糖的混合物中生产3HB的工艺,其中所有糖类都被消耗。提出将工业3HB生产工艺分为生长阶段和生产阶段,氮耗尽/限量是在后一阶段使3HB/细胞干重产率最大化的潜在策略。此处报道的大肠杆菌利用葡萄糖、木糖和阿拉伯糖生产3HB的比生产率进一步与目前从葡萄糖源生产的技术水平相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f864/4405896/d95b9725ef32/12934_2015_236_Fig1_HTML.jpg

相似文献

3
Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
Biotechnol Bioeng. 2014 Jun;111(6):1108-15. doi: 10.1002/bit.25182. Epub 2014 Jan 23.
6
Comparison of engineered Escherichia coli AF1000 and BL21 strains for (R)-3-hydroxybutyrate production in fed-batch cultivation.
Appl Microbiol Biotechnol. 2019 Jul;103(14):5627-5639. doi: 10.1007/s00253-019-09876-y. Epub 2019 May 18.
7
Microbial production of R-3-hydroxybutyric acid by recombinant E. coli harboring genes of phbA, phbB, and tesB.
Appl Microbiol Biotechnol. 2007 Sep;76(4):811-8. doi: 10.1007/s00253-007-1063-0. Epub 2007 Jul 4.
8
Regulation of arabinose and xylose metabolism in Escherichia coli.
Appl Environ Microbiol. 2010 Mar;76(5):1524-32. doi: 10.1128/AEM.01970-09. Epub 2009 Dec 18.
9
Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
Appl Biochem Biotechnol. 2002 Spring;98-100:429-48. doi: 10.1385/abab:98-100:1-9:429.
10
Regulating the production of (R)-3-hydroxybutyrate in Escherichia coli by N or P limitation.
Front Microbiol. 2015 Aug 19;6:844. doi: 10.3389/fmicb.2015.00844. eCollection 2015.

引用本文的文献

1
Sampling-free investigation of microbial carbon source preferences on renewable feedstocks via online monitoring of oxygen transfer rate.
Bioprocess Biosyst Eng. 2025 Mar;48(3):413-425. doi: 10.1007/s00449-024-03117-x. Epub 2024 Dec 16.
2
Citrate synthase variants improve yield of acetyl-CoA derived 3-hydroxybutyrate in Escherichia coli.
Microb Cell Fact. 2024 Jun 12;23(1):173. doi: 10.1186/s12934-024-02444-8.
3
Engineering of thioesterase YciA from Haemophilus influenzae for production of carboxylic acids.
Appl Microbiol Biotechnol. 2023 Oct;107(20):6219-6236. doi: 10.1007/s00253-023-12691-1. Epub 2023 Aug 12.
4
Active pharmaceutical ingredient (API) chemicals: a critical review of current biotechnological approaches.
Bioengineered. 2022 Feb;13(2):4309-4327. doi: 10.1080/21655979.2022.2031412.
5
Transcriptional profiling of the stringent response mutant strain E. coli SR reveals enhanced robustness to large-scale conditions.
Microb Biotechnol. 2021 May;14(3):993-1010. doi: 10.1111/1751-7915.13738. Epub 2020 Dec 26.
6
Beyond Intracellular Accumulation of Polyhydroxyalkanoates: Chiral Hydroxyalkanoic Acids and Polymer Secretion.
Front Bioeng Biotechnol. 2020 Apr 3;8:248. doi: 10.3389/fbioe.2020.00248. eCollection 2020.
7
Comparison of engineered Escherichia coli AF1000 and BL21 strains for (R)-3-hydroxybutyrate production in fed-batch cultivation.
Appl Microbiol Biotechnol. 2019 Jul;103(14):5627-5639. doi: 10.1007/s00253-019-09876-y. Epub 2019 May 18.
8
The role of the acyl-CoA thioesterase "YciA" in the production of (R)-3-hydroxybutyrate by recombinant Escherichia coli.
Appl Microbiol Biotechnol. 2019 May;103(9):3693-3704. doi: 10.1007/s00253-019-09707-0. Epub 2019 Mar 5.
10
Engineering Escherichia coli for production of 4-hydroxymandelic acid using glucose-xylose mixture.
Microb Cell Fact. 2016 May 27;15:90. doi: 10.1186/s12934-016-0489-4.

本文引用的文献

1
A mini review on renewable sources for biofuel.
Bioresour Technol. 2014 Oct;169:742-749. doi: 10.1016/j.biortech.2014.07.022. Epub 2014 Jul 11.
2
Production of (R)-3-hydroxybutyric acid by Burkholderia cepacia from wood extract hydrolysates.
AMB Express. 2014 Mar 18;4:28. doi: 10.1186/s13568-014-0028-9. eCollection 2014.
4
Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
Biotechnol Bioeng. 2014 Jun;111(6):1108-15. doi: 10.1002/bit.25182. Epub 2014 Jan 23.
5
SLIC: a method for sequence- and ligation-independent cloning.
Methods Mol Biol. 2012;852:51-9. doi: 10.1007/978-1-61779-564-0_5.
6
Production of (R)-3-hydroxybutyric acid by fermentation and bioconversion processes with Azohydromonas lata.
Bioresour Technol. 2011 Jun;102(12):6766-8. doi: 10.1016/j.biortech.2011.03.073. Epub 2011 Mar 27.
7
Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):504-9. doi: 10.1073/pnas.1010456108. Epub 2010 Dec 27.
8
Current trends in biodegradable polyhydroxyalkanoates.
J Biosci Bioeng. 2010 Dec;110(6):621-32. doi: 10.1016/j.jbiosc.2010.07.014. Epub 2010 Aug 17.
10
Enatiomerically pure hydroxycarboxylic acids: current approaches and future perspectives.
Appl Microbiol Biotechnol. 2010 Jun;87(1):41-52. doi: 10.1007/s00253-010-2530-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验