Stein Matthias, Gabdoulline Razif R, Wade Rebecca C
EML Research gGmbH, Molecular and Cellular Modelling, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany.
Mol Biosyst. 2010 Jan;6(1):152-64. doi: 10.1039/b912398a. Epub 2009 Sep 7.
The electrostatic potential of an enzyme is a key determinant of its substrate interactions and catalytic turnover. Here we invoke comparative analysis of protein electrostatic potentials, along with sequence and structural analysis, to classify and characterize all the enzymes in an entire pathway across a set of different organisms. The electrostatic potentials of the enzymes from the glycolytic pathway of 11 eukaryotes were analyzed by qPIPSA (quantitative protein interaction property similarity analysis). The comparison allows the functional assignment of neuron-specific isoforms of triosephosphate isomerase from zebrafish, the identification of unusual protein surface interaction properties of the mosquito glucose-6-phosphate isomerase and the functional annotation of ATP-dependent phosphofructokinases and cofactor-dependent phosphoglycerate mutases from plants. We here show that plants possess two parallel pathways to convert glucose. One is similar to glycolysis in humans, the other is specialized to let plants adapt to their environmental conditions. We use differences in electrostatic potentials to estimate kinetic parameters for the triosephosphate isomerases from nine species for which published parameters are not available. Along the core glycolytic pathway, phosphoglycerate mutase displays the most conserved electrostatic potential. The largest cross-species variations are found for glucose-6-phosphate isomerase, enolase and fructose-1,6-bisphosphate aldolase. The extent of conservation of electrostatic potentials along the pathway is consistent with the absence of a single rate-limiting step in glycolysis.
酶的静电势是其与底物相互作用及催化周转的关键决定因素。在此,我们运用蛋白质静电势的比较分析,结合序列和结构分析,对一组不同生物体中整个代谢途径的所有酶进行分类和表征。通过定量蛋白质相互作用特性相似性分析(qPIPSA)对11种真核生物糖酵解途径中酶的静电势进行了分析。该比较使得能够对斑马鱼磷酸丙糖异构酶的神经元特异性同工型进行功能分配,鉴定蚊子葡萄糖-6-磷酸异构酶不同寻常的蛋白质表面相互作用特性,以及对植物中依赖ATP的磷酸果糖激酶和依赖辅因子的磷酸甘油酸变位酶进行功能注释。我们在此表明,植物拥有两条平行的途径来转化葡萄糖。一条类似于人类的糖酵解途径,另一条则专门让植物适应其环境条件。我们利用静电势的差异来估算9种尚未有公开参数的物种的磷酸丙糖异构酶的动力学参数。在核心糖酵解途径中,磷酸甘油酸变位酶表现出最保守的静电势。葡萄糖-6-磷酸异构酶、烯醇化酶和果糖-1,6-二磷酸醛缩酶的跨物种差异最大。该途径中静电势的保守程度与糖酵解过程中不存在单一限速步骤相一致。