J. Craig Venter Institute, 10355 Science Center Dr., San Diego, CA 92121, USA.
Microb Ecol. 2010 Apr;59(3):415-27. doi: 10.1007/s00248-009-9623-8. Epub 2009 Dec 22.
Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H(2)) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H(2)in the rumen. Given the crucial role that H(2) plays in ruminant digestion, it is desirable to understand the microbial relationships that control H(2) partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research.
微生物燃料电池 (MFC) 系统利用微生物的催化活性,从有机和某些情况下的无机底物的氧化中产生电能。MFC 系统主要用于生物修复和生物能源应用;然而,这些系统也为培养协同微生物群落提供了独特的策略。有人假设,在 MFC 中促进电子传递的微生物机制可能是混合微生物群落中的一种合作策略,与种间氢 (H(2)) 转移相关或替代种间氢 (H(2)) 转移。反刍动物的微生物发酵过程和产甲烷作用高度依赖于瘤胃中 H(2)的消耗和产生。鉴于 H(2)在反刍动物消化中起着至关重要的作用,了解控制瘤胃中 H(2)分压的微生物关系是可取的;MFC 可以作为研究这个复杂生态系统的独特工具。此外,MFC 系统为研究在不同氧化还原条件下形成的生物膜提供了一种新方法,并可用于更深入地了解微生物生物膜如何影响动物健康。在这里,我们简要总结了在理解瘤胃微生物生态学、与动物健康相关的微生物生物膜以及 MFC 如何在反刍动物研究中进一步应用方面所做的努力。