Suppr超能文献

优化的导管设计和位置,用于大鼠纹状体中的对流增强递送。

Optimized cannula design and placement for convection-enhanced delivery in rat striatum.

机构信息

Department of Neurosurgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA 94103, United States.

出版信息

J Neurosci Methods. 2010 Mar 15;187(1):46-51. doi: 10.1016/j.jneumeth.2009.12.008. Epub 2009 Dec 22.

Abstract

The stereotactic delivery of therapeutic agents into brain has been problematic because of reflux and leakage of the delivered agent. Good distribution of infusates by convection-enhanced delivery (CED) depends very much on cannula design, precise cannula placement and infusion rates. We have recently published cannula targeting data for the non-human primate (NHP) putamen in which we defined infusion parameters referred to as "red", "blue", and "green" zones for cannula placements that result in poor, sub-optimal and optimal volumes of distribution (Vd), respectively. Therefore, we applied our observations in NHP putamen to the rat brain. Initially, trypan blue dye was infused into agarose gels to evaluate distribution and reflux characteristics of a scaled-down cannula without step and 1-mm stepped cannula. "Stepped" means a sharp transition from a wider stent to a narrower tip; thus the distance of the cannula tip to the larger diameter attachment defines the step distance. Reflux was contained with the stepped design even with an infusion rate of 3.0 microl/min and large infusion volumes in the agarose gel study. Infusions of a recombinant growth factor, GDNF, into rat striatum demonstrated that the presence of a 1-mm stepped cannula prevented reflux and resulted in excellent distribution of GDNF in the striatum. We conclude that a stepped cannula with a 1-mm tip is important for achieving reliable distribution of infused agents in rat brain. It should be considered when local therapies such as gene transfer, local protein administration or cellular replacement are evaluated in rodent models.

摘要

立体定向将治疗剂递送到大脑一直存在问题,因为递送到的药物会反流和渗漏。通过对流增强递送 (CED) 良好分布输注物在很大程度上取决于导管设计、精确的导管放置和输注速度。我们最近发表了非人灵长类动物 (NHP) 壳核的导管靶向数据,其中我们定义了输注参数,称为“红色”、“蓝色”和“绿色”区,用于导管放置,分别导致分布体积 (Vd) 差、次优和最佳。因此,我们将我们在 NHP 壳核中的观察结果应用于大鼠脑。最初,锥蓝染料被注入琼脂糖凝胶中,以评估缩小尺寸的无台阶和 1 毫米台阶导管的分布和反流特性。“台阶”是指从较宽的支架到较窄的尖端的急剧过渡;因此,导管尖端到较大直径附件的距离定义了台阶距离。即使在琼脂糖凝胶研究中以 3.0 微升/分钟的输注速度和大输注体积进行输注,台阶设计也能控制反流。将重组生长因子 GDNF 输注到大鼠纹状体中表明,存在 1 毫米台阶的导管可防止反流,并导致 GDNF 在纹状体中分布良好。我们得出结论,带有 1 毫米尖端的台阶导管对于在大鼠脑中可靠地分配输注剂很重要。在评估基因转移、局部蛋白给药或细胞替代等局部治疗时,应考虑使用这种导管。

相似文献

1
Optimized cannula design and placement for convection-enhanced delivery in rat striatum.
J Neurosci Methods. 2010 Mar 15;187(1):46-51. doi: 10.1016/j.jneumeth.2009.12.008. Epub 2009 Dec 22.
2
Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents.
J Neurosurg. 2005 Nov;103(5):923-9. doi: 10.3171/jns.2005.103.5.0923.
4
In vitro and in vivo testing of a novel recessed-step catheter for reflux-free convection-enhanced drug delivery to the brain.
J Neurosci Methods. 2013 Sep 30;219(1):1-9. doi: 10.1016/j.jneumeth.2013.06.008. Epub 2013 Jul 5.
5
Image-guided convection-enhanced delivery of GDNF protein into monkey putamen.
Neuroimage. 2011 Jan;54 Suppl 1:S189-95. doi: 10.1016/j.neuroimage.2010.01.023. Epub 2010 Jan 18.
6
Optimal region of the putamen for image-guided convection-enhanced delivery of therapeutics in human and non-human primates.
Neuroimage. 2011 Jan;54 Suppl 1:S196-203. doi: 10.1016/j.neuroimage.2009.08.069. Epub 2009 Sep 15.
10
Infusion-line pressure as a real-time monitor of convection-enhanced delivery in pre-clinical models.
J Neurosci Methods. 2014 Jan 15;221:127-31. doi: 10.1016/j.jneumeth.2013.09.019. Epub 2013 Oct 8.

引用本文的文献

2
Cancer brain metastasis: molecular mechanisms and therapeutic strategies.
Mol Biomed. 2025 Feb 25;6(1):12. doi: 10.1186/s43556-025-00251-0.
5
Drug Delivery to the Brain: Recent Advances and Unmet Challenges.
Pharmaceutics. 2023 Nov 23;15(12):2658. doi: 10.3390/pharmaceutics15122658.
7
Harnessing Ultrasound for Targeting Drug Delivery to the Brain and Breaching the Blood-Brain Tumour Barrier.
Pharmaceutics. 2022 Oct 19;14(10):2231. doi: 10.3390/pharmaceutics14102231.
8
Polymer nanocarriers for targeted local delivery of agents in treating brain tumors.
Nanotechnology. 2022 Dec 2;34(7). doi: 10.1088/1361-6528/ac9683.
9
Parametric Study of the Design Variables of an Arborizing Catheter on Dispersal Volume Using a Biphasic Computational Model.
J Eng Sci Med Diagn Ther. 2019 Aug;2(3):0310021-310029. doi: 10.1115/1.4042874. Epub 2019 Apr 1.

本文引用的文献

1
Optimal region of the putamen for image-guided convection-enhanced delivery of therapeutics in human and non-human primates.
Neuroimage. 2011 Jan;54 Suppl 1:S196-203. doi: 10.1016/j.neuroimage.2009.08.069. Epub 2009 Sep 15.
2
Detection of infusate leakage in the brain using real-time imaging of convection-enhanced delivery.
J Neurosurg. 2008 Nov;109(5):874-80. doi: 10.3171/JNS/2008/109/11/0874.
3
Real-time imaging of convection-enhanced delivery of viruses and virus-sized particles.
J Neurosurg. 2007 Sep;107(3):560-7. doi: 10.3171/JNS-07/09/0560.
4
Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents.
J Neurosurg. 2005 Nov;103(5):923-9. doi: 10.3171/jns.2005.103.5.0923.
5
Real-time visualization and characterization of liposomal delivery into the monkey brain by magnetic resonance imaging.
Brain Res Brain Res Protoc. 2005 Dec;16(1-3):20-6. doi: 10.1016/j.brainresprot.2005.08.003. Epub 2005 Sep 21.
6
AAV2-mediated gene delivery to monkey putamen: evaluation of an infusion device and delivery parameters.
Exp Neurol. 2005 Aug;194(2):476-83. doi: 10.1016/j.expneurol.2005.03.007.
7
Diffusion properties of the brain in health and disease.
Neurochem Int. 2004 Sep;45(4):453-66. doi: 10.1016/j.neuint.2003.11.009.
9
Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease.
Nat Med. 2003 May;9(5):589-95. doi: 10.1038/nm850. Epub 2003 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验