Suppr超能文献

囊性纤维化跨膜电导调节因子(CFTR)和上皮钠离子通道(ENaC)离子通道介导小鼠颌下腺中的 NaCl 吸收。

Cftr and ENaC ion channels mediate NaCl absorption in the mouse submandibular gland.

机构信息

Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14620, USA.

出版信息

J Physiol. 2010 Feb 15;588(Pt 4):713-24. doi: 10.1113/jphysiol.2009.183541. Epub 2009 Dec 21.

Abstract

Cystic fibrosis is caused by mutations in CFTR, the cystic fibrosis transmembrane conductance regulator gene. Disruption of CFTR-mediated anion conductance results in defective fluid and electrolyte movement in the epithelial cells of organs such as the pancreas, airways and sweat glands, but the function of CFTR in salivary glands is unclear. Salivary gland acinar cells produce an isotonic, plasma-like fluid, which is subsequently modified by the ducts to produce a hypotonic, NaCl-depleted final saliva. In the present study we investigated whether submandibular salivary glands (SMGs) in F508 mice (Cftr(F/F)) display ion transport defects characteristic of cystic fibrosis in other tissues. Immunolocalization and whole-cell recordings demonstrated that Cftr and the epithelial Na(+) (ENaC) channels are co-expressed in the apical membrane of submandibular duct cells, consistent with the significantly higher saliva [NaCl] observed in vivo in Cftr(F/F) mice. In contrast, Cftr and ENaC channels were not detected in acinar cells, nor was saliva production affected in Cftr(F/F) mice, implying that Cftr contributes little to the fluid secretion process in the mouse SMG. To identify the source of the NaCl absorption defect in Cftr(F/F) mice, saliva was collected from ex vivo perfused SMGs. Cftr(F/F) glands secreted saliva with significantly increased [NaCl]. Moreover, pharmacological inhibition of either Cftr or ENaC in the ex vivo SMGs mimicked the Cftr(F/F) phenotype. In summary, our results demonstrate that NaCl absorption requires and is likely to be mediated by functionally dependent Cftr and ENaC channels localized to the apical membranes of mouse salivary gland duct cells.

摘要

囊性纤维化是由 CFTR 基因突变引起的,CFTR 是囊性纤维化跨膜电导调节基因。CFTR 介导的阴离子电导的破坏导致胰腺、气道和汗腺等器官的上皮细胞中液体和电解质的运动缺陷,但 CFTR 在唾液腺中的功能尚不清楚。唾液腺腺泡细胞产生等渗、血浆样液体,随后被导管修饰,产生低渗、NaCl 耗尽的最终唾液。在本研究中,我们研究了 F508 小鼠(Cftr(F/F)) 的下颌下腺 (SMG) 是否显示出与其他组织中囊性纤维化特征一致的离子转运缺陷。免疫定位和全细胞记录表明,Cftr 和上皮 Na+(ENaC) 通道在颌下腺导管细胞的顶膜上共同表达,这与 Cftr(F/F) 小鼠体内观察到的显著更高的唾液[NaCl]一致。相比之下,在腺泡细胞中未检测到 Cftr 和 ENaC 通道,Cftr(F/F) 小鼠的唾液产生也不受影响,这意味着 Cftr 对小鼠 SMG 的液体分泌过程贡献很小。为了确定 Cftr(F/F) 小鼠中 NaCl 吸收缺陷的来源,从离体灌流的 SMG 中收集唾液。Cftr(F/F) 腺体分泌的唾液[NaCl]显著增加。此外,在离体 SMG 中药理学抑制 Cftr 或 ENaC 模拟了 Cftr(F/F) 表型。总之,我们的结果表明,NaCl 吸收需要并可能由定位于小鼠唾液腺导管细胞顶膜的功能性依赖 Cftr 和 ENaC 通道介导。

相似文献

1
Cftr and ENaC ion channels mediate NaCl absorption in the mouse submandibular gland.
J Physiol. 2010 Feb 15;588(Pt 4):713-24. doi: 10.1113/jphysiol.2009.183541. Epub 2009 Dec 21.
2
A mathematical model of ENaC and Slc26a6 regulation by CFTR in salivary gland ducts.
Am J Physiol Gastrointest Liver Physiol. 2024 May 1;326(5):G555-G566. doi: 10.1152/ajpgi.00168.2023. Epub 2024 Feb 13.
3
Effect of cytosolic pH on epithelial Na+ channel in normal and cystic fibrosis sweat ducts.
J Membr Biol. 2008 Sep-Oct;225(1-3):1-11. doi: 10.1007/s00232-008-9126-4. Epub 2008 Oct 21.
4
Functional interaction of CFTR and ENaC in sweat glands.
Pflugers Arch. 2003 Jan;445(4):499-503. doi: 10.1007/s00424-002-0959-x. Epub 2002 Nov 21.
5
[CFTR and ENaC functions in cystic fibrosis].
Medicina (B Aires). 2014;74(2):133-9.
6
Immuno and functional characterization of CFTR in submandibular and pancreatic acinar and duct cells.
Am J Physiol. 1997 Aug;273(2 Pt 1):C442-55. doi: 10.1152/ajpcell.1997.273.2.C442.
7
Defective NaCl Reabsorption in Salivary Glands of Eda-Null X-LHED Mice.
J Dent Res. 2018 Oct;97(11):1244-1251. doi: 10.1177/0022034518782461. Epub 2018 Jun 18.
9
ENaC activity requires CFTR channel function independently of phosphorylation in sweat duct.
J Membr Biol. 2005 Sep;207(1):23-33. doi: 10.1007/s00232-005-0798-8.

引用本文的文献

2
A mathematical model of ENaC and Slc26a6 regulation by CFTR in salivary gland ducts.
Am J Physiol Gastrointest Liver Physiol. 2024 May 1;326(5):G555-G566. doi: 10.1152/ajpgi.00168.2023. Epub 2024 Feb 13.
3
CFTR expression in human salivary gland acinar cells.
Am J Physiol Cell Physiol. 2024 Mar 1;326(3):C742-C748. doi: 10.1152/ajpcell.00549.2023. Epub 2024 Jan 29.
4
Structural and functional analysis of salivary intercalated duct cells reveals a secretory phenotype.
J Physiol. 2023 Oct;601(20):4539-4556. doi: 10.1113/JP285104. Epub 2023 Sep 19.
5
Role of innate immunity and systemic inflammation in cystic fibrosis disease progression.
Heliyon. 2023 Jun 29;9(7):e17553. doi: 10.1016/j.heliyon.2023.e17553. eCollection 2023 Jul.
7
Xerostomia and Its Cellular Targets.
Int J Mol Sci. 2023 Mar 10;24(6):5358. doi: 10.3390/ijms24065358.
8
A Mathematical Model of Salivary Gland Duct Cells.
Bull Math Biol. 2022 Jul 7;84(8):84. doi: 10.1007/s11538-022-01041-3.
9
Salivary gland function, development, and regeneration.
Physiol Rev. 2022 Jul 1;102(3):1495-1552. doi: 10.1152/physrev.00015.2021. Epub 2022 Mar 28.
10
Role of Salivary Biomarkers in Cystic Fibrosis: A Systematic Review.
Biomed Res Int. 2022 Jan 19;2022:5818840. doi: 10.1155/2022/5818840. eCollection 2022.

本文引用的文献

1
Reporting ethical matters in the Journal of Physiology: standards and advice.
J Physiol. 2009 Feb 15;587(Pt 4):713-9. doi: 10.1113/jphysiol.2008.167387.
2
Effect of cytosolic pH on epithelial Na+ channel in normal and cystic fibrosis sweat ducts.
J Membr Biol. 2008 Sep-Oct;225(1-3):1-11. doi: 10.1007/s00232-008-9126-4. Epub 2008 Oct 21.
3
Clcn2 encodes the hyperpolarization-activated chloride channel in the ducts of mouse salivary glands.
Am J Physiol Gastrointest Liver Physiol. 2008 Nov;295(5):G1058-67. doi: 10.1152/ajpgi.90384.2008. Epub 2008 Sep 18.
4
Involvement of apical P2Y2 receptor-regulated CFTR activity in muscarinic stimulation of Cl(-) reabsorption in rat submandibular gland.
Am J Physiol Regul Integr Comp Physiol. 2008 May;294(5):R1729-36. doi: 10.1152/ajpregu.00758.2007. Epub 2008 Mar 12.
5
CFTR function and prospects for therapy.
Annu Rev Biochem. 2008;77:701-26. doi: 10.1146/annurev.biochem.75.103004.142532.
8
Enhanced formation of a HCO3- transport metabolon in exocrine cells of Nhe1-/- mice.
J Biol Chem. 2007 Nov 30;282(48):35125-32. doi: 10.1074/jbc.M707266200. Epub 2007 Sep 21.
9
Developmental changes in proximal tubule NaCl transport.
Pediatr Nephrol. 2008 Feb;23(2):185-94. doi: 10.1007/s00467-007-0569-0. Epub 2007 Aug 8.
10
Regulation of membrane potential and fluid secretion by Ca2+-activated K+ channels in mouse submandibular glands.
J Physiol. 2007 Jun 1;581(Pt 2):801-17. doi: 10.1113/jphysiol.2006.127498. Epub 2007 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验