Creighton University School of Medicine, Department of Pharmacology, Omaha, NE 68178, USA.
J Pharmacol Exp Ther. 2010 Mar;332(3):698-709. doi: 10.1124/jpet.109.161802. Epub 2009 Dec 21.
Antillatoxin (ATX) is a structurally novel lipopeptide that activates voltage-gated sodium channels (VGSC) leading to sodium influx in cerebellar granule neurons and cerebrocortical neurons 8 to 9 days in vitro (Li et al., 2001; Cao et al., 2008). However, the precise recognition site for ATX on the VGSC remains to be defined. Inasmuch as elevation of intracellular sodium (Na(+)) may increase N-methyl-d-aspartate receptor (NMDAR)-mediated Ca(2+) influx, Na(+) may function as a signaling molecule. We hypothesized that ATX may enhance neurite outgrowth in cerebrocortical neurons by elevating Na(+) and augmenting NMDAR function. ATX (30-100 nM) robustly stimulated neurite outgrowth, and this enhancement was sensitive to the VGSC antagonist, tetrodotoxin. To unambiguously demonstrate the enhancement of NMDA receptor function by ATX, we recorded single-channel currents from cell-attached patches. ATX was found to increase the open probability of NMDA receptors. Na(+)-dependent up-regulation of NMDAR function has been shown to be regulated by Src family kinase (SFK) (Yu and Salter, 1998). The Src kinase inhibitor PP2 abrogated ATX-enhanced neurite outgrowth, suggesting a SFK involvement in this response. ATX-enhanced neurite outgrowth was also inhibited by the NMDAR antagonist, (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801), and the calmodulin-dependent kinase kinase (CaMKK) inhibitor, 1,8-naphthoylene benzimidazole-3-carboxylic acid (STO-609), demonstrating the requirement for NMDAR activation with subsequent downstream engagement of the Ca(2+)-dependent CaMKK pathway. These results with the structurally and mechanistically novel natural product, ATX, confirm and generalize our earlier results with a neurotoxin site 5 ligand. These data suggest that VGSC activators may represent a novel pharmacological strategy to regulate neuronal plasticity through NMDAR-dependent mechanisms.
抗替拉毒素(ATX)是一种结构新颖的脂肽,可激活电压门控钠通道(VGSC),导致小脑颗粒神经元和大脑皮质神经元在体外 8-9 天内钠离子内流(Li 等人,2001 年;Cao 等人,2008 年)。然而,ATX 在 VGSC 上的精确识别位点仍有待确定。由于细胞内钠离子([Na+](i))的升高可能会增加 N-甲基-D-天冬氨酸受体(NMDAR)介导的 Ca2+内流,因此 Na+可能作为信号分子发挥作用。我们假设 ATX 可能通过升高 [Na+](i)和增强 NMDAR 功能来增强大脑皮质神经元的突起生长。ATX(30-100 nM)强烈刺激突起生长,这种增强对 VGSC 拮抗剂河豚毒素敏感。为了明确证明 ATX 增强 NMDAR 功能,我们从细胞附着斑记录单通道电流。发现 ATX 增加了 NMDA 受体的开放概率。已经表明,Src 家族激酶(SFK)调节 Na+依赖性 NMDAR 功能的上调(Yu 和 Salter,1998 年)。Src 激酶抑制剂 PP2 阻断了 ATX 增强的突起生长,表明 SFK 参与了这种反应。NMDA 受体拮抗剂(5R,10S)-(+)-5-甲基-10,11-二氢-5H-二苯并[a,d]环庚烯-5,10-亚胺氢马来酸盐(MK-801)和钙调蛋白依赖性激酶激酶(CaMKK)抑制剂 1,8-萘酰亚胺苯并咪唑-3-羧酸(STO-609)也抑制了 ATX 增强的突起生长,表明需要 NMDAR 激活,随后下游参与 Ca2+依赖性 CaMKK 途径。这些使用结构和机制新颖的天然产物 ATX 的结果证实并概括了我们以前使用神经毒素位点 5 配体的结果。这些数据表明,VGSC 激活剂可能代表一种通过 NMDAR 依赖性机制调节神经元可塑性的新型药理学策略。