Creighton University, School of Medicine, Department of Pharmacology, Omaha, NE 68178, USA.
BMC Neurosci. 2010 Dec 14;11:154. doi: 10.1186/1471-2202-11-154.
Antillatoxin (ATX) is a structurally unique lipopeptide produced by the marine cyanobacterium Lyngbya majuscula. ATX activates voltage-gated sodium channel α-subunits at an undefined recognition site and stimulates sodium influx in neurons. However, the pharmacological properties and selectivity of ATX on the sodium channel α-subunits were not fully characterized.
In this study, we characterized the pharmacological properties and selectivity of ATX in cells heterologously expressing rNa(v)1.2, rNa(v)1.4 or rNa(v)1.5 α-subunits by using the Na(+) selective fluorescent dye, sodium-binding benzofuran isophthalate. ATX produced sodium influx in cells expressing each sodium channel α-subunit, whereas two other sodium channel activators, veratridine and brevetoxin-2, were without effect. The ATX potency at rNa(v)1.2, rNa(v)1.4 and rNa(v)1.5 did not differ significantly. Similarly, there were no significant differences in the efficacy for ATX-induced sodium influx between rNa(v)1.2, rNa(v)1.4 and rNa(v)1.5 α-subunits. ATX also produced robust Ca²(+) influx relative to other sodium channel activators in the calcium-permeable DEAA mutant of rNa(v)1.4 α-subunit. Finally, we demonstrated that the 8-demethyl-8,9-dihydro-antillatoxin analog was less efficacious and less potent in stimulating sodium influx.
ATX displayed a unique efficacy with respect to stimulation of sodium influx in cells expressing rNa(v)1.2, rNa(v)1.4 and rNa(v)1.5 α-subunits. The efficacy of ATX was distinctive inasmuch as it was not shared by activators of neurotoxin sites 2 and 5 on VGSC α-subunits. Given the unique pharmacological properties of ATX interaction with sodium channel α-subunits, decoding the molecular determinants and mechanism of action of antillatoxin may provide further insight into sodium channel gating mechanisms.
安替拉毒素(ATX)是一种结构独特的脂肽,由海洋蓝藻 Lyngbya majuscula 产生。ATX 在未定义的识别位点激活电压门控钠通道 α 亚基,并刺激神经元中的钠内流。然而,ATX 对钠通道 α 亚基的药理学特性和选择性尚未完全表征。
在这项研究中,我们通过使用 Na+ 选择性荧光染料,钠结合苯并呋喃异邻苯二甲酸,在异源表达 rNa(v)1.2、rNa(v)1.4 或 rNa(v)1.5 α-亚基的细胞中表征了 ATX 的药理学特性和选择性。ATX 在表达每种钠通道 α 亚基的细胞中都产生了钠内流,而另外两种钠通道激活剂,藜芦碱和布雷毒素-2 则没有作用。ATX 在 rNa(v)1.2、rNa(v)1.4 和 rNa(v)1.5 中的效力没有显著差异。同样,ATX 诱导的钠内流在 rNa(v)1.2、rNa(v)1.4 和 rNa(v)1.5 α-亚基之间的功效也没有显著差异。ATX 还在 rNa(v)1.4 α-亚基的钙通透性 DEAA 突变体中产生了相对其他钠通道激活剂更强的钙内流。最后,我们证明了 8-去甲基-8,9-二氢-安替拉毒素类似物在刺激钠内流方面的效力和效力较低。
ATX 在表达 rNa(v)1.2、rNa(v)1.4 和 rNa(v)1.5 α-亚基的细胞中表现出独特的钠内流刺激作用。ATX 的功效是独特的,因为它与 VGSC α-亚基上的神经毒素位点 2 和 5 的激活剂不同。鉴于 ATX 与钠通道 α-亚基相互作用的独特药理学特性,解码安替拉毒素的分子决定因素和作用机制可能会进一步深入了解钠通道门控机制。