Computational Neuroscience Laboratory, Salk Institute, La Jolla, CA 92037, USA.
Neural Comput. 2010 May;22(5):1245-71. doi: 10.1162/neco.2009.07-08-823.
The temporal waveform of neural activity is commonly estimated by low-pass filtering spike train data through convolution with a gaussian kernel. However, the criteria for selecting the gaussian width sigma are not well understood. Given an ensemble of Poisson spike trains generated by an instantaneous firing rate function lambda(t), the problem was to recover an optimal estimate of lambda(t) by gaussian filtering. We provide equations describing the optimal value of sigma using an error minimization criterion and examine how the optimal sigma varies within a parameter space defining the statistics of inhomogeneous Poisson spike trains. The process was studied both analytically and through simulations. The rate functions lambda(t) were randomly generated, with the three parameters defining spike statistics being the mean of lambda(t), the variance of lambda(t), and the exponent alpha of the Fourier amplitude spectrum 1/f(alpha) of lambda(t). The value of sigma(opt) followed a power law as a function of the pooled mean interspike interval I, sigma(opt) = aI(b), where a was inversely related to the coefficient of variation C(V) of lambda(t), and b was inversely related to the Fourier spectrum exponent alpha. Besides applications for data analysis, optimal recovery of an analog signal waveform lambda(t) from spike trains may also be useful in understanding neural signal processing in vivo.
神经活动的时间波形通常通过将尖峰序列数据与高斯核卷积进行低通滤波来估计。然而,选择高斯宽度 σ 的标准还不是很清楚。对于由瞬时发放率函数 λ(t) 产生的泊松尖峰序列的集合,问题是通过高斯滤波来恢复 λ(t) 的最优估计。我们提供了使用误差最小化准则描述 σ 的最优值的方程,并研究了在定义非均匀泊松尖峰序列统计量的参数空间内,最优 σ 如何变化。该过程进行了分析和模拟研究。 λ(t) 的发放率函数是随机生成的,定义尖峰统计的三个参数是 λ(t) 的平均值、 λ(t) 的方差以及 λ(t) 的傅里叶幅度谱 1/f(α)的指数 α。 σ(opt) 作为总平均尖峰间隔 I 的幂律函数, σ(opt)=aI(b),其中 a 与 λ(t) 的变异系数 C(V) 成反比,b 与傅里叶谱指数 α 成反比。除了数据分析的应用外,从尖峰序列中最优地恢复模拟信号波形 λ(t) 也可能有助于理解体内的神经信号处理。