Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
Chem Biol Drug Des. 2010 Feb;75(2):143-51. doi: 10.1111/j.1747-0285.2009.00921.x. Epub 2009 Dec 17.
Binding affinity optimization is critical during drug development. Here, we evaluate the thermodynamic consequences of filling a binding cavity with functionalities of increasing van der Waals radii (-H, -F, -Cl, and CH(3)) that improve the geometric fit without participating in hydrogen bonding or other specific interactions. We observe a binding affinity increase of two orders of magnitude. There appears to be three phases in the process. The first phase is associated with the formation of stable van der Waals interactions. This phase is characterized by a gain in binding enthalpy and a loss in binding entropy, attributed to a loss of conformational degrees of freedom. For the specific case presented in this article, the enthalpy gain amounts to -1.5 kcal/mol while the entropic losses amount to +0.9 kcal/mol resulting in a net 3.5-fold affinity gain. The second phase is characterized by simultaneous enthalpic and entropic gains. This phase improves the binding affinity 25-fold. The third phase represents the collapse of the trend and is triggered by the introduction of chemical functionalities larger than the binding cavity itself [CH(CH(3))(2)]. It is characterized by large enthalpy and affinity losses. The thermodynamic signatures associated with each phase provide guidelines for lead optimization.
结合亲和力优化在药物开发过程中至关重要。在这里,我们评估了用范德华半径(-H、-F、-Cl 和 CH(3))不断增加的功能基团填充结合腔对热力学的影响,这些功能基团可以改善几何拟合,而不参与氢键或其他特定相互作用。我们观察到结合亲和力增加了两个数量级。在这个过程中似乎有三个阶段。第一阶段与稳定的范德华相互作用的形成有关。这一阶段的特征是结合焓的增加和结合熵的损失,这归因于构象自由度的丧失。对于本文中提出的具体情况,焓的增加量为-1.5 kcal/mol,而熵的损失量为+0.9 kcal/mol,导致结合亲和力净增加 3.5 倍。第二阶段的特征是同时的焓和熵的增加。这一阶段将结合亲和力提高了 25 倍。第三阶段代表趋势的崩溃,由大于结合腔本身的化学功能基团[CH(CH(3))(2)]的引入引发。其特点是焓和亲和力的大量损失。与每个阶段相关的热力学特征为先导优化提供了指导。