Suppr超能文献

用于蛋白质成像和基于Förster 共振能量转移的分析的紧凑型多功能镍-氮基三乙酸酯修饰量子点。

Compact and versatile nickel-nitrilotriacetate-modified quantum dots for protein imaging and Förster resonance energy transfer based assay.

机构信息

Nano/Bio Chemistry Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea.

出版信息

Langmuir. 2010 May 18;26(10):7327-33. doi: 10.1021/la9041887.

Abstract

The generation of compact quantum dots (QDs) probes is of critical importance for visualizing molecular interaction occurring in biological context, particularly when using the Förster resonance energy transfer (FRET) approach. This Article reports novel water-soluble compact CdSe/ZnS QDs prepared by ligand exchange reaction using thiolated nitrilotriacetate (NTA). The resulting NTA-QDs revealed higher stability and remarkable conjugation efficiency compared to the other QDs prepared with different ligands by using the ligand exchange method. The Ni-NTA group is a well-known binding moiety for the detection and purification of oligohistidine-tagged recombinant proteins. We demonstrated that NiNTA-QDs prepared by Ni(2+) complexation exhibited highly specific binding ability toward 6-histidine (His)-tagged peptides present in various experimental conditions (buffer solution, agarose beads, and HEK cells). Importantly, the compact NiNTA-QDs serve as an efficient FRET donor. These results suggest that the stable and highly selective multifunctional NTA-QDs can be useful for labeling and tracking molecular interactions within biological context.

摘要

制备紧凑量子点(QD)探针对于在生物环境中可视化分子相互作用至关重要,特别是当使用Förster 共振能量转移(FRET)方法时。本文报道了一种新型的水溶性紧凑 CdSe/ZnS QD,它是通过使用巯基乙二胺三乙酸(NTA)进行配体交换反应制备的。与使用配体交换法用不同配体制备的其他 QD 相比,所得的 NTA-QD 具有更高的稳定性和显著提高的缀合效率。Ni-NTA 基团是一种众所周知的结合部分,用于检测和纯化寡组氨酸标记的重组蛋白。我们证明了通过 Ni(2+)络合制备的 NiNTA-QD 对各种实验条件下(缓冲溶液、琼脂糖珠和 HEK 细胞)存在的 6 组氨酸(His)标记肽具有高度特异性结合能力。重要的是,紧凑的 NiNTA-QD 可作为有效的 FRET 供体。这些结果表明,稳定且高选择性的多功能 NTA-QD 可用于标记和跟踪生物环境中的分子相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验