Division of Cardiovascular Research, Mid America Heart Institute, Saint Luke's Hospital, Kansas City, MO 64111, USA.
Circ Cardiovasc Interv. 2009 Jun;2(3):222-9. doi: 10.1161/CIRCINTERVENTIONS.108.846741. Epub 2009 May 8.
Bleeding in patients undergoing percutaneous coronary intervention (PCI) is associated with increased morbidity, mortality, length of hospitalization, and cost. We identified baseline clinical characteristics associated with bleeding complications after PCI and developed a simplified, clinically useful algorithm to predict patient risk.
Data were analyzed from 302 152 PCI procedures performed at 440 US centers participating in the National Cardiovascular Data Registry. As defined by the National Cardiovascular Data Registry, bleeding required transfusion, prolonged hospital stay, and/or a drop in hemoglobin >3.0 g/dL from any location, including percutaneous entry site, retroperitoneal, gastrointestinal, genitourinary, and other/unknown location. Bleeding complications occurred in 2.4% of patients. From the best-fitting model consisting of 15 clinical elements associated with post-PCI bleeding in a random 80% training cohort, we developed a parsimonious risk algorithm. Predictors of bleeding included age, gender, previous heart failure, glomerular filtration rate, peripheral vascular disease, no previous PCI, New York Heart Association/Canadian Cardiovascular Society Functional Classification class IV heart failure, ST-elevation myocardial infarction, non-ST-elevation myocardial infarction, and cardiogenic shock. The parsimonious model was validated in the remaining 20% of the population (c-statistic, 0.72) and in clinically relevant subgroups of patients. This simplified model was used to derive a clinical risk algorithm, with larger numbers corresponding with greater risk. In 3 categories, bleeding rates were greater in patients with higher estimates (<or=7, 0.7%; 8 to 17, 1.8%; >or=18, 5.1%).
This report identifies baseline clinical factors associated with bleeding and proposes a clinically useful algorithm to estimate bleeding risk. This model is potentially actionable in altering therapeutic decision making and improving outcomes in patients undergoing PCI.
经皮冠状动脉介入治疗(PCI)后出血与发病率、死亡率、住院时间和费用增加有关。我们确定了与 PCI 后出血并发症相关的基线临床特征,并开发了一种简化的、临床有用的算法来预测患者风险。
我们对 440 个美国中心的 302152 例 PCI 手术的数据进行了分析,这些中心参与了国家心血管数据注册中心。根据国家心血管数据注册中心的定义,出血需要输血、延长住院时间和/或血红蛋白从任何部位(包括经皮入路部位、腹膜后、胃肠道、泌尿生殖系统和其他/未知部位)下降 3.0 g/dL 以上。出血并发症发生在 2.4%的患者中。从一个包含 15 个与 PCI 后出血相关的临床因素的最佳拟合模型中,我们开发了一个简单的风险算法。出血的预测因素包括年龄、性别、既往心力衰竭、肾小球滤过率、外周血管疾病、无既往 PCI、纽约心脏协会/加拿大心血管学会功能分类 IV 级心力衰竭、ST 段抬高型心肌梗死、非 ST 段抬高型心肌梗死和心源性休克。该简化模型在其余 20%的人群中进行了验证(c 统计量为 0.72),并在患者的临床相关亚组中进行了验证。该简化模型用于推导一个临床风险算法,数字越大表示风险越高。在 3 个类别中,估计值较高(<=7,0.7%;8 至 17,1.8%;>=18,5.1%)的患者出血率更高。
本报告确定了与出血相关的基线临床因素,并提出了一种临床有用的算法来估计出血风险。该模型有可能改变治疗决策,并改善接受 PCI 的患者的预后。