Suppr超能文献

原生动物界和色界以及真核生物树的真核生物根。

Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree.

机构信息

Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.

出版信息

Biol Lett. 2010 Jun 23;6(3):342-5. doi: 10.1098/rsbl.2009.0948. Epub 2009 Dec 23.

Abstract

I discuss eukaryotic deep phylogeny and reclassify the basal eukaryotic kingdom Protozoa and derived kingdom Chromista in the light of multigene trees. I transfer the formerly protozoan Heliozoa and infrakingdoms Alveolata and Rhizaria into Chromista, which is sister to kingdom Plantae and arguably originated by synergistic double internal enslavement of green algal and red algal cells. I establish new subkingdoms (Harosa; Hacrobia) for the expanded Chromista. The protozoan phylum Euglenozoa differs immensely from other eukaryotes in its nuclear genome organization (trans-spliced multicistronic transcripts), mitochondrial DNA organization, cytochrome c-type biogenesis, cell structure and arguably primitive mitochondrial protein-import and nuclear DNA prereplication machineries. The bacteria-like absence of mitochondrial outer-membrane channel Tom40 and DNA replication origin-recognition complexes from trypanosomatid Euglenozoa roots the eukaryotic tree between Euglenozoa and all other eukaryotes (neokaryotes), or within Euglenozoa. Given their unique properties, I segregate Euglenozoa from infrakingdom Excavata (now comprising only phyla Percolozoa, Loukozoa, Metamonada), grouping infrakingdoms Euglenozoa and Excavata as the ancestral protozoan subkingdom Eozoa. I place phylum Apusozoa within the derived protozoan subkingdom Sarcomastigota. Clarifying early eukaryote evolution requires intensive study of properties distinguishing Euglenozoa from neokaryotes and Eozoa from neozoa (eukaryotes except Eozoa; ancestrally defined by haem lyase).

摘要

我讨论了真核生物的深层系统发育,并根据多基因树重新分类了基础真核生物界原生动物和衍生的色界生物。我将原原生动物类肉足虫和下门纤毛门和根足门转移到色界生物中,色界生物与植物界是姐妹群,可能是由绿藻和红藻细胞的协同双重内奴役起源的。我为扩展的色界生物建立了新的亚界(哈罗萨;哈克比亚)。原生动物门鞭毛类在其核基因组组织(转拼接多顺反子转录本)、线粒体 DNA 组织、细胞色素 c 型生物发生、细胞结构以及可能原始的线粒体蛋白导入和核 DNA 预复制机制方面与其他真核生物有很大的不同。细菌样的缺乏线粒体外膜通道 Tom40 和真核生物树中从鞭毛类原生动物根瘤菌中分离出来的 DNA 复制起始识别复合物,位于鞭毛类原生动物和所有其他真核生物(新核生物)之间,或者在鞭毛类原生动物内部。鉴于它们的独特性质,我将鞭毛类从下门挖掘虫(现在仅包括门 Percolozoa、Loukozoa、Metamonada)中分离出来,将下门鞭毛类和挖掘虫归类为原始原生动物亚界 Eozoa。我将门 Apusozoa 归入衍生的原生动物亚界肉足鞭毛门。澄清早期真核生物进化需要深入研究鞭毛类与新核生物以及 Eozoa 与新真核生物(除 Eozoa 外的真核生物;以血球裂解酶为基础)的区别。

相似文献

1
Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree.
Biol Lett. 2010 Jun 23;6(3):342-5. doi: 10.1098/rsbl.2009.0948. Epub 2009 Dec 23.
2
The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.
Int J Syst Evol Microbiol. 2002 Mar;52(Pt 2):297-354. doi: 10.1099/00207713-52-2-297.
3
A revised six-kingdom system of life.
Biol Rev Camb Philos Soc. 1998 Aug;73(3):203-66. doi: 10.1017/s0006323198005167.
6
Phylogeny of choanozoa, apusozoa, and other protozoa and early eukaryote megaevolution.
J Mol Evol. 2003 May;56(5):540-63. doi: 10.1007/s00239-002-2424-z.
8
Kingdom protozoa and its 18 phyla.
Microbiol Rev. 1993 Dec;57(4):953-94. doi: 10.1128/mr.57.4.953-994.1993.

引用本文的文献

1
Shaping the composition of the mitochondrial outer membrane.
Nat Cell Biol. 2025 Jun;27(6):890-901. doi: 10.1038/s41556-025-01683-0. Epub 2025 Jun 16.
2
Hypothesis that ancestral eukaryotes sexually proliferated without kinetochores or mitosis.
J Cell Sci. 2025 Jun 1;138(11). doi: 10.1242/jcs.263843. Epub 2025 Jun 10.
3
A robustly rooted tree of eukaryotes reveals their excavate ancestry.
Nature. 2025 Apr;640(8060):974-981. doi: 10.1038/s41586-025-08709-5. Epub 2025 Mar 12.
4
Biological and Nutritional Applications of Microalgae.
Nutrients. 2024 Dec 29;17(1):93. doi: 10.3390/nu17010093.
5
Structural insights into the assembly and energy transfer of haptophyte photosystem I-light-harvesting supercomplex.
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2413678121. doi: 10.1073/pnas.2413678121. Epub 2024 Dec 6.
6
Aurora B controls anaphase onset and error-free chromosome segregation in trypanosomes.
J Cell Biol. 2024 Nov 4;223(11). doi: 10.1083/jcb.202401169. Epub 2024 Aug 28.
7
Kinetoplastid kinetochore proteins KKT14-KKT15 are divergent Bub1/BubR1-Bub3 proteins.
Open Biol. 2024 Jun;14(6):240025. doi: 10.1098/rsob.240025. Epub 2024 Jun 12.

本文引用的文献

3
Trypanosome prereplication machinery contains a single functional orc1/cdc6 protein, which is typical of archaea.
Eukaryot Cell. 2009 Oct;8(10):1592-603. doi: 10.1128/EC.00161-09. Epub 2009 Aug 28.
4
Genomic footprints of a cryptic plastid endosymbiosis in diatoms.
Science. 2009 Jun 26;324(5935):1724-6. doi: 10.1126/science.1172983.
5
Chromalveolates and the evolution of plastids by secondary endosymbiosis.
J Eukaryot Microbiol. 2009 Jan-Feb;56(1):1-8. doi: 10.1111/j.1550-7408.2008.00371.x.
6
Evolution: revisiting the root of the eukaryote tree.
Curr Biol. 2009 Feb 24;19(4):R165-7. doi: 10.1016/j.cub.2008.12.032.
7
The single mitochondrial porin of Trypanosoma brucei is the main metabolite transporter in the outer mitochondrial membrane.
Mol Biol Evol. 2009 Mar;26(3):671-80. doi: 10.1093/molbev/msn288. Epub 2008 Dec 17.
8
Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes.
Biol Lett. 2008 Aug 23;4(4):366-9. doi: 10.1098/rsbl.2008.0224.
9
Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems?
FEBS J. 2008 May;275(10):2385-402. doi: 10.1111/j.1742-4658.2008.06380.x. Epub 2008 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验