Cavalier-Smith T
Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
Int J Syst Evol Microbiol. 2003 Nov;53(Pt 6):1741-58. doi: 10.1099/ijs.0.02548-0.
It is argued here that the anaerobic protozoan zooflagellate Parabasalia, Carpediemonas and Eopharyngia (diplomonads, enteromonads, retortamonads) constitute a holophyletic group, for which the existing name Trichozoa is adopted as a new subphylum. Ancestrally, Trichozoa probably had hydrogenosomes, stacked Golgi dictyosomes, three anterior centrioles and one posterior centriole: the typical tetrakont pattern. It is also argued that the closest relatives of Trichozoa are Anaeromonada (Trimastix, oxymonads), and the two groups are classified as subphyla of a revised phylum Metamonada. Returning Parabasalia and Anaeromonadea to Metamonada, as in Grassé's original classification, simplifies classification of the kingdom Protozoa by reducing the number of phyla within infrakingdom Excavata from five to four. Percolozoa (Heterolobosea plus Percolatea classis nov.) and Metamonada are probably both ancestrally quadriciliate with a kinetid of four centrioles attached to the nucleus; the few biciliates among them are probably secondarily derived. Metamonada ancestrally probably had two divergent centriole pairs, whereas, in Percolozoa, all four centrioles are parallel. It is suggested that Discicristata (Percolozoa, Euglenozoa) are holophyletic, ancestrally with two parallel centrioles. In the phylum Loukozoa, Malawimonadea classis nov. is established for Malawimonas (with a new family and order also) and Diphyllatea classis nov., for Diphylleida (Diphylleia, Collodictyon), is transferred back to Apusozoa. A new class, order and family are established for the anaerobic, biciliate, tricentriolar Carpediemonas, transferring it from Loukozoa to Trichozoa because of its triply flanged cilia; like Retortamonas, it may be secondarily biciliate--its unique combination of putative hydrogenosomes and flanged cilia agree with molecular evidence that Carpediemonas is sister to Eopharyngia, diverging before their ancestor lost hydrogenosomes and acquired a cytopharynx. Removal of anaeromonads and Carpediemonas makes Loukozoa more homogeneous, being basically biciliate, aerobic and free-living, in contrast to Metamonada. A new taxon-rich rRNA tree supports holophyly of Discicristata and Trichozoa strongly, holophyly of Metamonada and Excavata and paraphyly of Loukozoa weakly. Mitochondria were probably transformed into hydrogenosomes independently in the ancestors of lyromonad Percolozoa and Metamonada and further reduced in the ancestral eopharyngian. Evidence is briefly discussed that Metamonada and all other excavates share a photosynthetic ancestry with Euglenozoa and are secondarily non-photosynthetic, as predicted by the cabozoan hypothesis for a single secondary symbiogenetic acquisition of green algal plastids by the last common ancestor of Euglenozoa and Cercozoa. Excavata plus core Rhizaria (Cercozoa, Retaria) probably form an ancestrally photophagotrophic clade. The origin from a benthic loukozoan ancestor of the characteristic cellular features of Percolozoa and Euglenozoa through divergent adaptations for feeding on or close to surfaces is also discussed.
本文认为,厌氧原生动物动鞭毛虫超鞭目、披发虫属和始咽虫属(双滴虫目、肠滴虫目、曲滴虫目)构成一个单系类群,现采用“Trichozoa”这一现有名称作为一个新的亚门。在进化史上,Trichozoa可能具有氢化酶体、堆叠的高尔基体囊泡、三个前中心粒和一个后中心粒:即典型的四核模式。本文还认为,Trichozoa最亲近的亲属是厌氧单胞虫纲(曲滴虫属、尖毛虫目),这两个类群被归类为修订后的后滴虫门的亚门。将超鞭目和厌氧单胞虫纲回归到后滴虫门,就像格拉塞最初的分类那样,通过将挖掘类下的门数量从五个减少到四个,简化了原生动物界分类。渗养虫门(变形鞭毛虫纲加新纲渗养虫纲)和后滴虫门在进化史上可能最初都是四核纤毛虫,其动质体有四个附着在细胞核上的中心粒;其中少数双纤毛虫可能是次生的。后滴虫门在进化史上可能有两对不同的中心粒,而在渗养虫门中,所有四个中心粒都是平行的。有人认为盘嵴总门(渗养虫门、眼虫门)是单系类群,在进化史上有两个平行的中心粒。在毛滴虫门中,新纲马拉维滴虫纲用于马拉维滴虫(同时还有一个新科和新目),新纲双叶虫纲用于双叶虫目(双叶虫属、盘状网柄菌属),并将其重新归入无尾鞭毛虫门。为厌氧、双纤毛、三中心粒的披发虫属建立了一个新纲、新目和新科,由于其具三重边缘的纤毛,将其从毛滴虫门转移到Trichozoa;与曲滴虫属一样,它可能是次生双纤毛——其假定的氢化酶体和边缘纤毛的独特组合与分子证据一致,即披发虫属是始咽虫属的姐妹群,在它们的祖先失去氢化酶体并获得细胞咽之前就已分化。去除厌氧单胞虫纲和披发虫属使毛滴虫门更加同质化,与后滴虫门相比,基本上是双纤毛、需氧和自由生活的。一个新的富含分类单元的rRNA树强烈支持盘嵴总门和Trichozoa的单系性,对后滴虫门和挖掘类的单系性支持较弱,对毛滴虫门的并系性支持也较弱。线粒体可能在变形鞭毛虫纲渗养虫和后滴虫门的祖先中独立地转化为氢化酶体,并在始咽虫的祖先中进一步减少。简要讨论了相关证据,即后滴虫门和所有其他挖掘类与眼虫门共享光合起源,并且是次生非光合的,正如卡波佐假说所预测的,眼虫门和丝足虫门的最后共同祖先通过单一的次生共生获得绿藻质体。挖掘类加上核心有根虫类(丝足虫纲、有孔虫纲)可能形成一个进化史上的光吞噬类分支。还讨论了渗养虫门和眼虫门的特征性细胞特征从底栖毛滴虫门祖先通过在表面或靠近表面取食的不同适应方式的起源。