Suppr超能文献

鸣禽次级大脑听觉神经元对同种鸟鸣的反应:走向层级框架。

Representations of conspecific song by starling secondary forebrain auditory neurons: toward a hierarchical framework.

机构信息

Dept. of Organismal Biology and Anatomy, Univ. of Chicago, 1027 E 57th St., Chicago, IL 60637, USA.

出版信息

J Neurophysiol. 2010 Mar;103(3):1195-208. doi: 10.1152/jn.00464.2009. Epub 2009 Dec 23.

Abstract

The functional organization giving rise to stimulus selectivity in higher-order auditory neurons remains under active study. We explored the selectivity for motifs, spectrotemporally distinct perceptual units in starling song, recording the responses of 96 caudomedial mesopallium (CMM) neurons in European starlings (Sturnus vulgaris) under awake-restrained and urethane-anesthetized conditions. A subset of neurons was highly selective between motifs. Selectivity was correlated with low spontaneous firing rates and high spike timing precision, and all but one of the selective neurons had similar spike waveforms. Neurons were further tested with stimuli in which the notes comprising the motifs were manipulated. Responses to most of the isolated notes were similar in amplitude, duration, and temporal pattern to the responses elicited by those notes in the context of the motif. For these neurons, we could accurately predict the responses to motifs from the sum of the responses to notes. Some notes were suppressed by the motif context, such that removing other notes from motifs unmasked additional excitation. Models of linear summation of note responses consistently outperformed spectrotemporal receptive field models in predicting responses to song stimuli. Tests with randomized sequences of notes confirmed the predictive power of these models. Whole notes gave better predictions than did note fragments. Thus in CMM, auditory objects (motifs) can be represented by a linear combination of excitation and suppression elicited by the note components of the object. We hypothesize that the receptive fields arise from selective convergence by inputs responding to specific spectrotemporal features of starling notes.

摘要

高级听觉神经元产生刺激选择性的功能组织仍然是一个活跃的研究领域。我们记录了 96 只欧洲椋鸟(Sturnus vulgaris)中脑背侧中脑(CMM)神经元在清醒束缚和氨基甲酸乙酯麻醉条件下的反应,探索了它们对鸣禽歌曲中具有独特时频谱特性的知觉单元(即音乐动机)的选择性。一小部分神经元在音乐动机之间具有高度选择性。这种选择性与低自发放电率和高尖峰时间精度相关,除了一个选择性神经元之外,所有神经元的尖峰波形都相似。研究还使用了去除音乐动机中音符的刺激来进一步测试神经元。去除音乐动机中音符的刺激可以揭示额外的兴奋,这些音符的响应幅度、持续时间和时间模式与在音乐动机背景下的响应相似。对于这些神经元,我们可以根据音符的总和准确预测音乐动机的响应。一些音符被音乐动机抑制,即去除音乐动机中的其他音符会揭示出额外的兴奋。线性相加的音符响应模型在预测歌曲刺激的响应方面始终优于时频谱接受域模型。使用随机音符序列的测试证实了这些模型的预测能力。完整音符的预测效果优于音符片段。因此,在 CMM 中,听觉对象(音乐动机)可以通过对象的音符成分所引起的兴奋和抑制的线性组合来表示。我们假设,这些感受野是由对特定的鸣禽音符的时频谱特征做出反应的输入的选择性汇聚而产生的。

相似文献

1
Representations of conspecific song by starling secondary forebrain auditory neurons: toward a hierarchical framework.
J Neurophysiol. 2010 Mar;103(3):1195-208. doi: 10.1152/jn.00464.2009. Epub 2009 Dec 23.
2
Song recognition learning and stimulus-specific weakening of neural responses in the avian auditory forebrain.
J Neurophysiol. 2010 Apr;103(4):1785-97. doi: 10.1152/jn.00885.2009. Epub 2010 Jan 27.
3
Emergence of learned categorical representations within an auditory forebrain circuit.
J Neurosci. 2011 Feb 16;31(7):2595-606. doi: 10.1523/JNEUROSCI.3930-10.2011.
4
Development of selectivity for natural sounds in the songbird auditory forebrain.
J Neurophysiol. 2007 May;97(5):3517-31. doi: 10.1152/jn.01066.2006. Epub 2007 Mar 14.
5
Functional organization of forebrain pathways for song production and perception.
J Neurobiol. 1997 Nov;33(5):671-93. doi: 10.1002/(sici)1097-4695(19971105)33:5<671::aid-neu12>3.0.co;2-c.
6
Neuronal populations and single cells representing learned auditory objects.
Nature. 2003 Aug 7;424(6949):669-74. doi: 10.1038/nature01731.
7
Temporal scales of auditory objects underlying birdsong vocal recognition.
J Acoust Soc Am. 2008 Aug;124(2):1350-9. doi: 10.1121/1.2945705.
9
Perceptual classification based on the component structure of song in European starlings.
J Acoust Soc Am. 2000 Jun;107(6):3369-81. doi: 10.1121/1.429408.
10
Song selectivity in the song system and in the auditory forebrain.
Ann N Y Acad Sci. 2004 Jun;1016:222-45. doi: 10.1196/annals.1298.023.

引用本文的文献

1
A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex.
PLoS Comput Biol. 2019 Jan 28;15(1):e1006723. doi: 10.1371/journal.pcbi.1006723. eCollection 2019 Jan.
2
Response properties of single neurons in higher level auditory cortex of adult songbirds.
J Neurophysiol. 2019 Jan 1;121(1):218-237. doi: 10.1152/jn.00751.2018. Epub 2018 Nov 21.
3
Auditory evoked BOLD responses in awake compared to lightly anaesthetized zebra finches.
Sci Rep. 2017 Oct 19;7(1):13563. doi: 10.1038/s41598-017-13014-x.
5
Hierarchical emergence of sequence sensitivity in the songbird auditory forebrain.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2016 Mar;202(3):163-83. doi: 10.1007/s00359-016-1070-7. Epub 2016 Feb 10.
6
Central auditory neurons have composite receptive fields.
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1441-6. doi: 10.1073/pnas.1506903113. Epub 2016 Jan 19.
7
Birds of a feather flock--and sing--together.
Lab Anim (NY). 2016 Jan;45(1):11. doi: 10.1038/laban.913.
8
Automatic reconstruction of physiological gestures used in a model of birdsong production.
J Neurophysiol. 2015 Nov;114(5):2912-22. doi: 10.1152/jn.00385.2015. Epub 2015 Sep 16.
9
Pattern-Induced Covert Category Learning in Songbirds.
Curr Biol. 2015 Jul 20;25(14):1873-7. doi: 10.1016/j.cub.2015.05.046. Epub 2015 Jun 25.

本文引用的文献

1
Neural correlates of categorical perception in learned vocal communication.
Nat Neurosci. 2009 Feb;12(2):221-8. doi: 10.1038/nn.2246. Epub 2009 Jan 11.
2
Cooperative nonlinearities in auditory cortical neurons.
Neuron. 2008 Jun 26;58(6):956-66. doi: 10.1016/j.neuron.2008.04.026.
3
Organizing principles of spectro-temporal encoding in the avian primary auditory area field L.
Neuron. 2008 Jun 26;58(6):938-55. doi: 10.1016/j.neuron.2008.04.028.
4
On the importance of static nonlinearity in estimating spatiotemporal neural filters with natural stimuli.
J Neurophysiol. 2008 May;99(5):2496-509. doi: 10.1152/jn.01397.2007. Epub 2008 Mar 19.
6
The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.
J Neurosci. 2008 Jan 9;28(2):446-55. doi: 10.1523/JNEUROSCI.1775-07.2007.
7
Cortical interference effects in the cocktail party problem.
Nat Neurosci. 2007 Dec;10(12):1601-7. doi: 10.1038/nn2009. Epub 2007 Nov 11.
8
Trade-off between object selectivity and tolerance in monkey inferotemporal cortex.
J Neurosci. 2007 Nov 7;27(45):12292-307. doi: 10.1523/JNEUROSCI.1897-07.2007.
9
Learning to hear: plasticity of auditory cortical processing.
Curr Opin Neurobiol. 2007 Aug;17(4):456-64. doi: 10.1016/j.conb.2007.07.004. Epub 2007 Aug 21.
10
A simple connectivity scheme for sparse coding in an olfactory system.
J Neurosci. 2007 Feb 14;27(7):1659-69. doi: 10.1523/JNEUROSCI.4171-06.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验