Suppr超能文献

响应非线性对光谱时间感受野解释的影响。

The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.

作者信息

Christianson G Björn, Sahani Maneesh, Linden Jennifer F

机构信息

UCL Ear Institute, University College London, London, WC1E 6BT, United Kingdom.

出版信息

J Neurosci. 2008 Jan 9;28(2):446-55. doi: 10.1523/JNEUROSCI.1775-07.2007.

Abstract

Neurons in the central auditory system are often described by the spectrotemporal receptive field (STRF), conventionally defined as the best linear fit between the spectrogram of a sound and the spike rate it evokes. An STRF is often assumed to provide an estimate of the receptive field of a neuron, i.e., the spectral and temporal range of stimuli that affect the response. However, when the true stimulus-response function is nonlinear, the STRF will be stimulus dependent, and changes in the stimulus properties can alter estimates of the sign and spectrotemporal extent of receptive field components. We demonstrate analytically and in simulations that, even when uncorrelated stimuli are used, interactions between simple neuronal nonlinearities and higher-order structure in the stimulus can produce STRFs that show contributions from time-frequency combinations to which the neuron is actually insensitive. Only when spectrotemporally independent stimuli are used does the STRF reliably indicate features of the underlying receptive field, and even then it provides only a conservative estimate. One consequence of these observations, illustrated using natural stimuli, is that a stimulus-induced change in an STRF could arise from a consistent but nonlinear neuronal response to stimulus ensembles with differing higher-order dependencies. Thus, although the responses of higher auditory neurons may well involve adaptation to the statistics of different stimulus ensembles, stimulus dependence of STRFs alone, or indeed of any overly constrained stimulus-response mapping, cannot demonstrate the nature or magnitude of such effects.

摘要

中枢听觉系统中的神经元通常用频谱时间感受野(STRF)来描述,传统上定义为声音的频谱图与其诱发的放电率之间的最佳线性拟合。STRF通常被认为可以提供神经元感受野的估计值,即影响反应的刺激的频谱和时间范围。然而,当真实的刺激-反应函数是非线性时,STRF将依赖于刺激,并且刺激特性的变化可以改变感受野成分的符号和频谱时间范围的估计值。我们通过分析和模拟证明,即使使用不相关的刺激,简单神经元非线性与刺激中的高阶结构之间的相互作用也可以产生STRF,这些STRF显示出神经元实际上不敏感的时频组合的贡献。只有当使用频谱时间独立的刺激时,STRF才能可靠地指示潜在感受野的特征,即便如此,它也只提供一个保守的估计。使用自然刺激来说明这些观察结果的一个后果是,STRF中由刺激引起的变化可能源于对具有不同高阶依赖性的刺激集合的一致但非线性的神经元反应。因此,尽管高等听觉神经元的反应很可能涉及对不同刺激集合统计特性的适应,但仅STRF的刺激依赖性,或者实际上任何过度受限的刺激-反应映射,都无法证明此类效应的性质或程度。

相似文献

1
The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.
J Neurosci. 2008 Jan 9;28(2):446-55. doi: 10.1523/JNEUROSCI.1775-07.2007.
2
Linearity of cortical receptive fields measured with natural sounds.
J Neurosci. 2004 Feb 4;24(5):1089-100. doi: 10.1523/JNEUROSCI.4445-03.2004.
3
Plasticity of Multidimensional Receptive Fields in Core Rat Auditory Cortex Directed by Sound Statistics.
Neuroscience. 2021 Jul 15;467:150-170. doi: 10.1016/j.neuroscience.2021.04.028. Epub 2021 May 2.
4
Capturing contextual effects in spectro-temporal receptive fields.
Hear Res. 2016 Sep;339:195-210. doi: 10.1016/j.heares.2016.07.012. Epub 2016 Jul 27.
5
Spectrotemporal contrast kernels for neurons in primary auditory cortex.
J Neurosci. 2012 Aug 15;32(33):11271-84. doi: 10.1523/JNEUROSCI.1715-12.2012.
6
Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design.
J Comput Neurosci. 2000 Jul-Aug;9(1):85-111. doi: 10.1023/a:1008990412183.
7
Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons.
PLoS Comput Biol. 2016 Nov 11;12(11):e1005113. doi: 10.1371/journal.pcbi.1005113. eCollection 2016 Nov.
8
Dynamic spectrotemporal feature selectivity in the auditory midbrain.
J Neurosci. 2008 May 21;28(21):5412-21. doi: 10.1523/JNEUROSCI.0073-08.2008.
9
Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds.
J Neurosci. 2000 Mar 15;20(6):2315-31. doi: 10.1523/JNEUROSCI.20-06-02315.2000.

引用本文的文献

1
Receptive-field nonlinearities in primary auditory cortex: a comparative perspective.
Cereb Cortex. 2024 Sep 3;34(9). doi: 10.1093/cercor/bhae364.
2
Quantitative models of auditory cortical processing.
Hear Res. 2023 Mar 1;429:108697. doi: 10.1016/j.heares.2023.108697. Epub 2023 Jan 14.
3
Cortical adaptation to sound reverberation.
Elife. 2022 May 26;11:e75090. doi: 10.7554/eLife.75090.
4
Nonlinear effects of intrinsic dynamics on temporal encoding in a model of avian auditory cortex.
PLoS Comput Biol. 2021 Feb 22;17(2):e1008768. doi: 10.1371/journal.pcbi.1008768. eCollection 2021 Feb.
5
Simple transformations capture auditory input to cortex.
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28442-28451. doi: 10.1073/pnas.1922033117. Epub 2020 Oct 23.
7
8
Multivoxel codes for representing and integrating acoustic features in human cortex.
Neuroimage. 2020 Aug 15;217:116661. doi: 10.1016/j.neuroimage.2020.116661. Epub 2020 Feb 17.
9
A dynamic network model of temporal receptive fields in primary auditory cortex.
PLoS Comput Biol. 2019 May 6;15(5):e1006618. doi: 10.1371/journal.pcbi.1006618. eCollection 2019 May.
10
Contrast gain control in mouse auditory cortex.
J Neurophysiol. 2018 Oct 1;120(4):1872-1884. doi: 10.1152/jn.00847.2017. Epub 2018 Jul 25.

本文引用的文献

2
Temporal processing and adaptation in the songbird auditory forebrain.
Neuron. 2006 Sep 21;51(6):845-59. doi: 10.1016/j.neuron.2006.08.030.
3
Response adaptation to broadband sounds in primary auditory cortex of the awake ferret.
Hear Res. 2006 Nov;221(1-2):91-103. doi: 10.1016/j.heares.2006.08.002. Epub 2006 Sep 18.
4
Spike-triggered neural characterization.
J Vis. 2006 Jul 17;6(4):484-507. doi: 10.1167/6.4.13.
5
Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex.
J Comput Neurosci. 2006 Apr;20(2):111-36. doi: 10.1007/s10827-005-3589-4. Epub 2006 Feb 20.
7
Efficient auditory coding.
Nature. 2006 Feb 23;439(7079):978-82. doi: 10.1038/nature04485.
9
Spatiotemporal elements of macaque v1 receptive fields.
Neuron. 2005 Jun 16;46(6):945-56. doi: 10.1016/j.neuron.2005.05.021.
10
Sustained firing in auditory cortex evoked by preferred stimuli.
Nature. 2005 May 19;435(7040):341-6. doi: 10.1038/nature03565.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验