Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA.
J Biol Chem. 2010 Mar 5;285(10):7670-85. doi: 10.1074/jbc.M109.090175. Epub 2009 Dec 23.
A previous study identified the peroxisome proliferator-activated receptor alpha (PPARalpha) activation biomarkers 21-steroid carboxylic acids 11beta-hydroxy-3,20-dioxopregn-4-en-21-oic acid (HDOPA) and 11beta,20-dihydroxy-3-oxo-pregn-4-en-21-oic acid (DHOPA). In the present study, the molecular mechanism and the metabolic pathway of their production were determined. The PPARalpha-specific time-dependent increases in HDOPA and 20alpha-DHOPA paralleled the development of adrenal cortex hyperplasia, hypercortisolism, and spleen atrophy, which was attenuated in adrenalectomized mice. Wy-14,643 activation of PPARalpha induced hepatic FGF21, which caused increased neuropeptide Y and agouti-related protein mRNAs in the hypothalamus, stimulation of the agouti-related protein/neuropeptide Y neurons, and activation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in increased adrenal cortex hyperplasia and corticosterone production, revealing a link between PPARalpha and the HPA axis in controlling energy homeostasis and immune regulation. Corticosterone was demonstrated as the precursor of 21-carboxylic acids both in vivo and in vitro. Under PPARalpha activation, the classic reductive metabolic pathway of corticosterone was suppressed, whereas an alternative oxidative pathway was uncovered that leads to the sequential oxidation on carbon 21 resulting in HDOPA. The latter was then reduced to the end product 20alpha-DHOPA. Hepatic cytochromes P450, aldehyde dehydrogenase (ALDH3A2), and 21-hydroxysteroid dehydrogenase (AKR1C18) were found to be involved in this pathway. Activation of PPARalpha resulted in the induction of Aldh3a2 and Akr1c18, both of which were confirmed as target genes through introduction of promoter luciferase reporter constructs into mouse livers in vivo. This study underscores the power of mass spectrometry-based metabolomics combined with genomic and physiologic analyses in identifying downstream metabolic biomarkers and the corresponding upstream molecular mechanisms.
先前的研究确定了过氧化物酶体增殖物激活受体α(PPARα)激活生物标志物 21-类固醇羧酸 11β-羟基-3,20-二氧孕甾-4-烯-21-羧酸(HDOPA)和 11β,20-二羟基-3-氧孕甾-4-烯-21-羧酸(DHOPA)。在本研究中,确定了它们产生的分子机制和代谢途径。PPARα 特异性的时间依赖性 HDOPA 和 20α-DHOPA 的增加与肾上腺皮质增生、皮质醇增多症和脾萎缩的发展平行,而在肾上腺切除的小鼠中则减弱。WY-14,643 激活 PPARα 诱导肝 FGF21,导致下丘脑神经肽 Y 和 agouti 相关蛋白 mRNA 增加,刺激 agouti 相关蛋白/神经肽 Y 神经元,并激活下丘脑-垂体-肾上腺(HPA)轴,导致肾上腺皮质增生和皮质酮产生增加,揭示了 PPARα 与 HPA 轴在控制能量平衡和免疫调节中的联系。皮质酮在体内和体外均被证明是 21-羧酸的前体。在 PPARα 激活下,皮质酮的经典还原代谢途径被抑制,而发现了一种替代的氧化途径,导致碳 21 上的顺序氧化,从而产生 HDOPA。后者随后被还原为终产物 20α-DHOPA。发现肝细胞色素 P450、醛脱氢酶(ALDH3A2)和 21-羟甾醇脱氢酶(AKR1C18)参与了这一途径。PPARα 的激活导致 Aldh3a2 和 Akr1c18 的诱导,这两种酶均通过在体内将启动子荧光素酶报告基因构建体导入小鼠肝脏中得到证实。这项研究强调了基于质谱的代谢组学与基因组和生理学分析相结合的力量,可用于识别下游代谢生物标志物及其相应的上游分子机制。