Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea.
Nature. 2009 Dec 24;462(7276):1039-43. doi: 10.1038/nature08639.
The control of charge transport in an active electronic device depends intimately on the modulation of the internal charge density by an external node. For example, a field-effect transistor relies on the gated electrostatic modulation of the channel charge produced by changing the relative position of the conduction and valence bands with respect to the electrodes. In molecular-scale devices, a longstanding challenge has been to create a true three-terminal device that operates in this manner (that is, by modifying orbital energy). Here we report the observation of such a solid-state molecular device, in which transport current is directly modulated by an external gate voltage. Resonance-enhanced coupling to the nearest molecular orbital is revealed by electron tunnelling spectroscopy, demonstrating direct molecular orbital gating in an electronic device. Our findings demonstrate that true molecular transistors can be created, and so enhance the prospects for molecularly engineered electronic devices.
有源电子设备中电荷输运的控制与通过外部节点对内部电荷密度的调制密切相关。例如,场效应晶体管依赖于通过改变相对于电极的导带和价带的相对位置,对通道电荷进行栅控静电调制来实现。在分子尺度的器件中,长期以来的一个挑战是创建一种真正的三端器件,使其以这种方式(即通过改变轨道能量)运行。在这里,我们报告了这种固态分子器件的观测结果,其中传输电流可直接通过外部栅极电压进行调制。电子隧道谱揭示了与最近的分子轨道的共振增强耦合,证明了电子器件中直接的分子轨道门控。我们的研究结果表明,真正的分子晶体管可以被创建,从而提高了分子工程电子设备的前景。