Jeong Jeeyoon, Kim Hyun Woo, Kim Dai-Sik
Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
Nanophotonics. 2022 Mar 24;11(7):1231-1260. doi: 10.1515/nanoph-2021-0798. eCollection 2022 Mar.
With recent advances in nanofabrication technology, various metallic gap structures with gap widths reaching a few to sub-nanometer, and even 'zero-nanometer', have been realized. At such regime, metallic gaps not only exhibit strong electromagnetic field confinement and enhancement, but also incorporate various quantum phenomena in a macroscopic scale, finding applications in ultrasensitive detection using nanosystems, enhancement of light-matter interactions in low-dimensional materials, and ultralow-power manipulation of electromagnetic waves, etc. Therefore, moving beyond nanometer to 'zero-nanometer' can greatly diversify applications of metallic gaps and may open the field of dynamic 'gaptronics.' In this paper, an overview is given on wafer-scale metallic gap structures down to zero-nanometer gap width limit. Theoretical description of metallic gaps from sub-10 to zero-nanometer limit, various wafer-scale fabrication methods and their applications are presented. With such versatility and broadband applicability spanning visible to terahertz and even microwaves, the field of 'gaptronics' can be a central building block for photochemistry, quantum optical devices, and 5/6G communications.
随着纳米制造技术的最新进展,已经实现了各种间隙宽度达到几纳米至亚纳米甚至“零纳米”的金属间隙结构。在这种情况下,金属间隙不仅表现出强电磁场限制和增强,还在宏观尺度上纳入了各种量子现象,在使用纳米系统的超灵敏检测、低维材料中光与物质相互作用的增强以及电磁波的超低功耗操纵等方面得到应用。因此,从纳米迈向“零纳米”可以极大地拓展金属间隙的应用,并可能开启动态“间隙电子学”领域。本文概述了直至零纳米间隙宽度极限的晶圆级金属间隙结构。介绍了从亚10纳米到零纳米极限的金属间隙的理论描述、各种晶圆级制造方法及其应用。凭借从可见光到太赫兹甚至微波的如此广泛的通用性和宽带适用性,“间隙电子学”领域可以成为光化学、量子光学器件和5/6G通信的核心组成部分。