ARTORG Center for Biomedical Engineering Research, University of Bern, Stauffacherstrasse 78, 3014 Bern, Switzerland.
Int J Comput Assist Radiol Surg. 2010 Jan;5(1):99-107. doi: 10.1007/s11548-009-0386-y. Epub 2009 Jul 24.
Accurate reconstruction of a patient-specific surface model of the proximal femur from preoperatively or intraoperatively available sparse data plays an important role in planning and supporting various computer-assisted surgical procedures.
In this paper, we present an integrated approach using a multi-resolution point distribution model (MR-PDM) to reconstruct a patient-specific surface model of the proximal femur from sparse input data, which may consist of sparse point data or a limited number of calibrated X-ray images. Depending on the modality of the input data, our approach chooses different PDMs. When 3D sparse points are used, which may be obtained intraoperatively via a pointer-based digitization or from a calibrated ultrasound, a fine level point distribution model (FL-PDM) is used in the reconstruction process. In contrast, when calibrated X-ray images are used, which may be obtained preoperatively or intraoperatively, a coarse level point distribution model (CL-PDM) will be used.
The present approach was verified on 31 femurs. Three different types of input data, i.e., sparse points, calibrated fluoroscopic images, and calibrated X-ray radiographs, were used in our experiments to reconstruct a surface model of the associated bone. Our experimental results demonstrate promising accuracy of the present approach.
A multi-resolution point distribution model facilitate the reconstruction of a patient-specific surface model of the proximal femur from sparse input data.
从术前或术中可用的稀疏数据中准确重建患者特定的股骨近端表面模型对于规划和支持各种计算机辅助手术过程起着重要作用。
在本文中,我们提出了一种使用多分辨率点分布模型(MR-PDM)的集成方法,从稀疏输入数据中重建患者特定的股骨近端表面模型,这些稀疏输入数据可能包括稀疏点数据或有限数量的校准 X 射线图像。根据输入数据的方式,我们的方法选择不同的 PDM。当使用 3D 稀疏点时,这些点可以通过基于指针的数字化或从校准的超声术中获得,在重建过程中使用精细级别点分布模型(FL-PDM)。相比之下,当使用术前或术中获得的校准 X 射线图像时,将使用粗糙级别点分布模型(CL-PDM)。
本方法在 31 个股骨上进行了验证。在我们的实验中,使用了三种不同类型的输入数据,即稀疏点、校准透视图像和校准 X 射线照片,以重建相关骨骼的表面模型。我们的实验结果表明,该方法具有很高的准确性。
多分辨率点分布模型有助于从稀疏输入数据中重建患者特定的股骨近端表面模型。