Suppr超能文献

从 DXA 图像生成近端股骨的 3D 形状、密度、皮质厚度和有限元网格。

Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.

机构信息

Department of Applied Physics, University of Eastern Finland, Kuopio, Finland, POB 1627, Kuopio 70211, Finland; Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland, POB 1777, Kuopio 70211, Finland; Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland, POB 100, Kuopio 70029, Finland; Department of Biomedical Engineering, Lund University, Lund, Sweden, Box 118, Lund 221 00, Sweden.

Department of Biomedical Engineering, Lund University, Lund, Sweden, Box 118, Lund 221 00, Sweden.

出版信息

Med Image Anal. 2015 Aug;24(1):125-134. doi: 10.1016/j.media.2015.06.001. Epub 2015 Jun 19.

Abstract

Areal bone mineral density (aBMD), as measured by dual-energy X-ray absorptiometry (DXA), predicts hip fracture risk only moderately. Simulation of bone mechanics based on DXA imaging of the proximal femur, may help to improve the prediction accuracy. Therefore, we collected three (1-3) image sets, including CT images and DXA images of 34 proximal cadaver femurs (set 1, including 30 males, 4 females), 35 clinical patient CT images of the hip (set 2, including 27 males, 8 females) and both CT and DXA images of clinical patients (set 3, including 12 female patients). All CT images were segmented manually and landmarks were placed on both femurs and pelvises. Two separate statistical appearance models (SAMs) were built using the CT images of the femurs and pelvises in sets 1 and 2, respectively. The 3D shape of the femur was reconstructed from the DXA image by matching the SAMs with the DXA images. The orientation and modes of variation of the SAMs were adjusted to minimize the sum of the absolute differences between the projection of the SAMs and a DXA image. The mesh quality and the location of the SAMs with respect to the manually placed control points on the DXA image were used as additional constraints. Then, finite element (FE) models were built from the reconstructed shapes. Mean point-to-surface distance between the reconstructed shape and CT image was 1.0 mm for cadaver femurs in set 1 (leave-one-out test) and 1.4 mm for clinical subjects in set 3. The reconstructed volumetric BMD showed a mean absolute difference of 140 and 185 mg/cm(3) for set 1 and set 3 respectively. The generation of the SAM and the limitation of using only one 2D image were found to be the most significant sources of errors in the shape reconstruction. The noise in the DXA images had only small effect on the accuracy of the shape reconstruction. DXA-based FE simulation was able to explain 85% of the CT-predicted strength of the femur in stance loading. The present method can be used to accurately reconstruct the 3D shape and internal density of the femur from 2D DXA images. This may help to derive new information from clinical DXA images by producing patient-specific FE models for mechanical simulation of femoral bone mechanics.

摘要

基于双能 X 射线吸收法(DXA)测量的骨密度(aBMD)只能适度预测髋部骨折风险。基于 DXA 对股骨近端成像的骨力学模拟,可能有助于提高预测准确性。因此,我们收集了三组(1-3)图像集,包括 34 个尸体股骨的 CT 图像和 DXA 图像(第 1 组,包括 30 名男性,4 名女性)、35 个临床患者髋关节的 CT 图像(第 2 组,包括 27 名男性,8 名女性)以及临床患者的 CT 和 DXA 图像(第 3 组,包括 12 名女性患者)。所有 CT 图像均进行手动分割,并在股骨和骨盆上放置了地标。使用第 1 组和第 2 组中的股骨和骨盆 CT 图像分别构建了两个独立的统计外观模型(SAM)。通过将 SAM 与 DXA 图像进行匹配,从 DXA 图像中重建股骨的 3D 形状。调整 SAM 的方向和变化模式,以最小化 SAM 的投影与 DXA 图像之间的绝对差之和。网格质量和 SAM 相对于 DXA 图像上手动放置的控制点的位置被用作附加约束。然后,从重建的形状构建有限元(FE)模型。对于第 1 组中的尸体股骨(留一法测试),重建形状与 CT 图像之间的平均点到面距离为 1.0 毫米,对于第 3 组中的临床受试者为 1.4 毫米。重建的体积 BMD 分别显示出第 1 组和第 3 组的 140 和 185mg/cm(3)的平均绝对差异。SAM 的生成和仅使用一个二维图像的限制被发现是形状重建中最显著的误差源。DXA 图像中的噪声仅对形状重建的准确性产生很小的影响。基于 DXA 的 FE 模拟能够解释站立负荷下股骨 CT 预测强度的 85%。本方法可用于从二维 DXA 图像准确重建股骨的 3D 形状和内部密度。这可能有助于通过为股骨骨力学的机械模拟生成患者特定的 FE 模型,从临床 DXA 图像中获得新信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验