Suppr超能文献

时变而非力变预测了快速和慢速等长收缩的终点准确性。

Timing variability and not force variability predicts the endpoint accuracy of fast and slow isometric contractions.

机构信息

Department of Kinesiology, Arizona State University, Tempe, AZ, USA.

出版信息

Exp Brain Res. 2010 Apr;202(1):189-202. doi: 10.1007/s00221-009-2126-5. Epub 2009 Dec 24.

Abstract

The purpose of the study was to determine the contributions of endpoint variance and trajectory variability to the endpoint accuracy of goal-directed isometric contractions when the target force and contraction speed were varied. Thirteen young adults (25 +/- 6 years) performed blocks of 15 trials at each of 2 contraction speeds and 4 target forces. Subjects were instructed to match the peak of a parabolic force trajectory to a target force by controlling the abduction force exerted by the index finger. The time to peak force was either 150 ms (fast) or 1 s (slow). The target forces were 20, 40, 60, and 80% of the maximal force that could be achieved in 150 ms during an MVC. The same absolute forces were required for both contraction speeds. Endpoint accuracy and variability in force and time along with intramuscular EMG activity of the agonist (first dorsal interosseus) and antagonist (second palmar interosseus) muscles were quantified for each block of trials. The principal dependent variables were endpoint error (shortest distance between the coordinates of the target and the peak force), endpoint variance (sum of the variance in peak force and time to peak force), trial-to-trial variability (SD of peak force and time to peak force), SD of the force trajectory (SD of the detrended force from force onset to peak force), normalized peak EMG amplitude, and the SD of normalized peak EMG amplitude. Stepwise multiple linear regression models were used to determine the EMG activity parameters that could explain the differences observed in endpoint error and endpoint variance. Endpoint error increased with target force for the fast contractions, but not for the slow contractions. In contrast, endpoint variance was greatest at the lowest force and was not associated with endpoint error at either contraction speed. Furthermore, force trajectory SD was not associated with endpoint error or endpoint variance for either contraction speed. Only the trial-to-trial variability of the timing predicted endpoint accuracy for fast and slow contractions. These findings indicate that endpoint error in tasks that require force and timing accuracy is minimized by controlling timing variability but not force variability, and that endpoint error is not related to the amplitude of the activation signal.

摘要

这项研究的目的是确定在目标力和收缩速度变化时,终点方差和轨迹可变性对目标导向等长收缩终点准确性的贡献。13 名年轻人(25 +/- 6 岁)在 2 种收缩速度和 4 种目标力下,每个速度进行 15 次试验块。要求受试者通过控制食指施加的外展力,将抛物线力轨迹的峰值与目标力匹配。达到峰值力的时间为 150ms(快)或 1s(慢)。目标力为 20、40、60 和 80%在 150ms 的 MVC 中可以达到的最大力。两种收缩速度都需要相同的绝对力。量化了每个试验块的力和时间的终点准确性和变异性,以及激动剂(第一背侧间骨间肌)和拮抗剂(第二掌侧间骨间肌)肌肉的肌内 EMG 活动。主要的因变量是终点误差(目标和峰值力坐标之间的最短距离)、终点方差(峰值力和达到峰值力时间的方差之和)、试验间变异性(峰值力和达到峰值力时间的标准差)、力轨迹的 SD(从力起始到峰值力的力去趋势的 SD)、归一化峰值 EMG 幅度和归一化峰值 EMG 幅度的 SD。逐步多元线性回归模型用于确定可以解释在终点误差和终点方差中观察到的差异的 EMG 活动参数。对于快速收缩,终点误差随目标力的增加而增加,但对于慢速收缩则不然。相反,在最低力下,终点方差最大,并且与两种收缩速度下的终点误差均无关。此外,对于两种收缩速度,力轨迹 SD 均与终点误差或终点方差无关。只有定时的试验间变异性预测了快速和慢速收缩的终点准确性。这些发现表明,在需要力和定时准确性的任务中,通过控制定时变异性而不是力变异性,可以最小化终点误差,并且终点误差与激活信号的幅度无关。

相似文献

1
Timing variability and not force variability predicts the endpoint accuracy of fast and slow isometric contractions.
Exp Brain Res. 2010 Apr;202(1):189-202. doi: 10.1007/s00221-009-2126-5. Epub 2009 Dec 24.
2
Endpoint accuracy for a small and a large hand muscle in young and old adults during rapid, goal-directed isometric contractions.
Exp Brain Res. 2008 May;187(3):373-85. doi: 10.1007/s00221-008-1309-9. Epub 2008 Feb 21.
4
Different neural adjustments improve endpoint accuracy with practice in young and old adults.
J Neurophysiol. 2007 May;97(5):3340-50. doi: 10.1152/jn.01138.2006. Epub 2007 Mar 21.
5
Removal of visual feedback alters muscle activity and reduces force variability during constant isometric contractions.
Exp Brain Res. 2009 Jul;197(1):35-47. doi: 10.1007/s00221-009-1883-5. Epub 2009 Jun 21.
6
The interaction of respiration and visual feedback on the control of force and neural activation of the agonist muscle.
Hum Mov Sci. 2011 Dec;30(6):1022-38. doi: 10.1016/j.humov.2010.09.007. Epub 2011 May 4.
7
Control of oscillatory force tasks: Low-frequency oscillations in force and muscle activity.
Hum Mov Sci. 2019 Apr;64:89-100. doi: 10.1016/j.humov.2019.01.009. Epub 2019 Jan 25.
8
The amplitude of force variability is correlated in the knee extensor and elbow flexor muscles.
Exp Brain Res. 2007 Jan;176(3):448-64. doi: 10.1007/s00221-006-0631-3. Epub 2006 Aug 4.
9
Comparison of maximal unilateral versus bilateral voluntary contraction force.
Eur J Appl Physiol. 2011 Aug;111(8):1571-8. doi: 10.1007/s00421-010-1775-1. Epub 2010 Dec 28.
10
Greater amount of visual information exacerbates force control in older adults during constant isometric contractions.
Exp Brain Res. 2011 Sep;213(4):351-61. doi: 10.1007/s00221-011-2777-x. Epub 2011 Jul 29.

引用本文的文献

2
Exploring the Influence of Inter-Trial Interval on the Assessment of Short-Interval Intracortical Inhibition.
Bioengineering (Basel). 2024 Jun 25;11(7):645. doi: 10.3390/bioengineering11070645.
4
The Influence of Transcranial Alternating Current Stimulation on Fatigue Resistance.
Brain Sci. 2023 Aug 21;13(8):1225. doi: 10.3390/brainsci13081225.
7
Quantitative Separation of Tremor and Ataxia in Essential Tremor.
Ann Neurol. 2020 Aug;88(2):375-387. doi: 10.1002/ana.25781. Epub 2020 Jul 8.
8
Fluctuations in Human Corticospinal Activity Prior to Grasp.
Front Syst Neurosci. 2019 Dec 20;13:77. doi: 10.3389/fnsys.2019.00077. eCollection 2019.
10
Motor control differs for increasing and releasing force.
J Neurophysiol. 2016 Jun 1;115(6):2924-30. doi: 10.1152/jn.00715.2015. Epub 2016 Mar 9.

本文引用的文献

2
Noise in the nervous system.
Nat Rev Neurosci. 2008 Apr;9(4):292-303. doi: 10.1038/nrn2258.
3
Endpoint accuracy for a small and a large hand muscle in young and old adults during rapid, goal-directed isometric contractions.
Exp Brain Res. 2008 May;187(3):373-85. doi: 10.1007/s00221-008-1309-9. Epub 2008 Feb 21.
5
Different neural adjustments improve endpoint accuracy with practice in young and old adults.
J Neurophysiol. 2007 May;97(5):3340-50. doi: 10.1152/jn.01138.2006. Epub 2007 Mar 21.
6
Hand dominance and multi-finger synergies.
Neurosci Lett. 2006 Dec 6;409(3):200-4. doi: 10.1016/j.neulet.2006.09.048. Epub 2006 Oct 2.
7
An optimization principle for determining movement duration.
J Neurophysiol. 2006 Jun;95(6):3875-86. doi: 10.1152/jn.00751.2005. Epub 2006 Mar 29.
8
Neuronal variability: noise or part of the signal?
Nat Rev Neurosci. 2005 May;6(5):389-97. doi: 10.1038/nrn1668.
9
Optimality principles in sensorimotor control.
Nat Neurosci. 2004 Sep;7(9):907-15. doi: 10.1038/nn1309.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验