Suppr超能文献

一种用于确定运动持续时间的优化原则。

An optimization principle for determining movement duration.

作者信息

Tanaka Hirokazu, Krakauer John W, Qian Ning

机构信息

Center for Neurobiology and Behavior and Department of Physiology and Cellular Biophysics, , Columbia University, Kolb Annex Rm 519, 1051 Riverside Drive, New York, New York 10032, USA.

出版信息

J Neurophysiol. 2006 Jun;95(6):3875-86. doi: 10.1152/jn.00751.2005. Epub 2006 Mar 29.

Abstract

Movement duration is an integral component of motor control, but nearly all extant optimization models of motor planning prefix duration instead of explaining it. Here we propose a new optimization principle that predicts movement duration. The model assumes that the brain attempts to minimize movement duration under the constraint of meeting an accuracy criterion. The criterion is task and context dependent but is fixed for a given task and context. The model determines a unique duration as a trade-off between speed (time optimality) and accuracy (acceptable endpoint scatter). We analyzed the model for a linear motor plant, and obtained a closed-form equation for determining movement duration. By solving the equation numerically with specific plant parameters for the eye and arm, we found that the model can reproduce saccade duration as a function of amplitude (the main sequence), and arm-movement duration as a function of the ratio of target distance to size (Fitts's law). In addition, it explains the dependency of peak saccadic speed on amplitude and the dependency of saccadic duration on initial eye position. Furthermore, for arm movements, the model predicts a scaling relationship between peak velocity and distance and a reduction in movement duration with a moderate increase in viscosity. Finally, for a linear plant, our model predicts a neural control signal identical to that of the minimum-variance model set to the same movement duration. This control signal is a smooth function of time (except at the endpoint), in contrast to the discontinuous bang-bang control found in the time-optimal control literature. We suggest that one aspect of movement planning, as revealed by movement duration, may be to assign an endpoint accuracy criterion for a given task and context.

摘要

运动持续时间是运动控制的一个重要组成部分,但几乎所有现有的运动规划优化模型都将持续时间作为前提条件,而非对其进行解释。在此,我们提出一种预测运动持续时间的新优化原则。该模型假设大脑试图在满足精度标准的约束下使运动持续时间最小化。这个标准取决于任务和情境,但对于给定的任务和情境是固定的。该模型确定一个独特的持续时间,作为速度(时间最优性)和精度(可接受的终点分散度)之间的权衡。我们分析了线性运动装置的模型,并得到了一个用于确定运动持续时间的闭式方程。通过使用眼睛和手臂的特定装置参数对方程进行数值求解,我们发现该模型可以将扫视持续时间再现为幅度的函数(主序列),并将手臂运动持续时间再现为目标距离与大小之比的函数(菲茨定律)。此外,它解释了峰值扫视速度对幅度的依赖性以及扫视持续时间对初始眼睛位置的依赖性。此外,对于手臂运动,该模型预测了峰值速度与距离之间的缩放关系,以及随着粘度适度增加运动持续时间的减少。最后,对于线性装置,我们的模型预测的神经控制信号与设置为相同运动持续时间的最小方差模型的信号相同。与时间最优控制文献中发现的不连续开关控制不同,这个控制信号是时间的平滑函数(端点处除外)。我们认为,运动持续时间所揭示的运动规划的一个方面可能是为给定的任务和情境分配一个终点精度标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验