Centre for Sustainable Aquaculture Research, Department of Pure and Applied Ecology, Swansea University, Swansea SA2 8PP, UK.
J Theor Biol. 2010 Apr 7;263(3):269-80. doi: 10.1016/j.jtbi.2009.12.021. Epub 2009 Dec 23.
A mechanistic model of microalgae is used to explore the implications of modifying microalgal chlorophyll content and photosynthetic efficiency with an aim to optimising commercial biomass production. The models show the potential for a 10 fold increase in microalgae productivity in genetically modified versus unmodified configurations, while also enabling the use of bioreactors of greater optical depth operating at lower dilution rates. Analysis suggests that natural selection of a trait benefiting the individual (high Chl:C(max), i.e., high antennae size) conflicts with artificial selection of a trait (low Chl:C(max)) of most benefit to production at the population level. The implication is that GM strains rather than strains selected from nature will be most beneficial for commercial algal biofuels production. Further, escaped GM algae populations may, depending on the specific nature of the modification, be quickly out-competed by the natural forms because individually a high Chl:C is beneficial in low light environments. However, it remains possible that changes in biochemical composition associated with genetic modification of photosystem competence, or with other selection processes to enhance commercial gain, may adversely affect the value of such organisms as prey for zooplankton, leading to the unwanted generation of future harmful algae.
采用微藻机理模型,探索通过改变微藻叶绿素含量和光合作用效率来优化商业生物量生产的意义。模型表明,与未经修饰的配置相比,经过基因修饰的微藻生产力有 10 倍的增长潜力,同时还能够使用具有更大光学深度的生物反应器以更低的稀释率运行。分析表明,有利于个体的性状(高 Chl:C(max),即高天线尺寸)的自然选择与对种群水平最有利的生产性状(低 Chl:C(max))的人工选择相冲突。这意味着对于商业藻类生物燃料生产而言,转基因菌株而不是从自然界中选择的菌株将最有益。此外,逃逸的转基因藻类种群可能会因修饰的具体性质而迅速被自然形式所淘汰,因为在低光照环境中,高 Chl:C 个体是有益的。然而,与光合作用能力的遗传修饰相关的生化成分变化,或者其他增强商业收益的选择过程,仍有可能对这些生物作为浮游动物的猎物的价值产生不利影响,从而导致未来有害藻类的不必要产生。