Suppr超能文献

将微藻置于生物燃料优先清单上:技术挑战综述。

Placing microalgae on the biofuels priority list: a review of the technological challenges.

机构信息

Department of Chemistry, University of Durham, South Road, Durham, UK.

出版信息

J R Soc Interface. 2010 May 6;7(46):703-26. doi: 10.1098/rsif.2009.0322. Epub 2009 Dec 23.

Abstract

Microalgae provide various potential advantages for biofuel production when compared with 'traditional' crops. Specifically, large-scale microalgal culture need not compete for arable land, while in theory their productivity is greater. In consequence, there has been resurgence in interest and a proliferation of algae fuel projects. However, while on a theoretical basis, microalgae may produce between 10- and 100-fold more oil per acre, such capacities have not been validated on a commercial scale. We critically review current designs of algal culture facilities, including photobioreactors and open ponds, with regards to photosynthetic productivity and associated biomass and oil production and include an analysis of alternative approaches using models, balancing space needs, productivity and biomass concentrations, together with nutrient requirements. In the light of the current interest in synthetic genomics and genetic modifications, we also evaluate the options for potential metabolic engineering of the lipid biosynthesis pathways of microalgae. We conclude that although significant literature exists on microalgal growth and biochemistry, significantly more work needs to be undertaken to understand and potentially manipulate algal lipid metabolism. Furthermore, with regards to chemical upgrading of algal lipids and biomass, we describe alternative fuel synthesis routes, and discuss and evaluate the application of catalysts traditionally used for plant oils. Simulations that incorporate financial elements, along with fluid dynamics and algae growth models, are likely to be increasingly useful for predicting reactor design efficiency and life cycle analysis to determine the viability of the various options for large-scale culture. The greatest potential for cost reduction and increased yields most probably lies within closed or hybrid closed-open production systems.

摘要

与“传统”作物相比,微藻在生物燃料生产方面具有各种潜在优势。具体而言,大规模微藻培养无需与耕地竞争,而从理论上讲,其生产力更大。因此,人们对藻类燃料项目的兴趣再次高涨,项目如雨后春笋般涌现。然而,尽管从理论上讲,微藻每英亩可能产生 10 到 100 倍的油,但这种产能尚未在商业规模上得到验证。我们批判性地审查了藻类培养设施的当前设计,包括光生物反应器和开放池塘,以了解其光合生产力以及相关的生物质和产油量,并分析了使用模型、平衡空间需求、生产力和生物质浓度以及养分需求的替代方法。鉴于人们对合成基因组学和遗传修饰的兴趣,我们还评估了对微藻脂质生物合成途径进行潜在代谢工程的选择。我们得出的结论是,尽管关于微藻生长和生物化学的文献很多,但仍需要做更多的工作来理解和潜在地操纵藻类的脂质代谢。此外,关于藻类脂质和生物质的化学升级,我们描述了替代燃料合成途径,并讨论和评估了传统上用于植物油脂的催化剂的应用。结合财务元素的模拟,以及流体动力学和藻类生长模型,对于预测反应器设计效率和生命周期分析以确定各种大规模培养选项的可行性可能会越来越有用。降低成本和提高产量的最大潜力可能在于封闭或混合封闭-开放生产系统。

相似文献

1
Placing microalgae on the biofuels priority list: a review of the technological challenges.
J R Soc Interface. 2010 May 6;7(46):703-26. doi: 10.1098/rsif.2009.0322. Epub 2009 Dec 23.
2
Microalgal lipids biochemistry and biotechnological perspectives.
Biotechnol Adv. 2014 Dec;32(8):1476-93. doi: 10.1016/j.biotechadv.2014.10.003. Epub 2014 Oct 14.
4
Algal biofuels.
Photosynth Res. 2013 Nov;117(1-3):207-19. doi: 10.1007/s11120-013-9828-z. Epub 2013 Apr 21.
5
Global evaluation of biofuel potential from microalgae.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8691-6. doi: 10.1073/pnas.1321652111. Epub 2014 May 27.
6
Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production.
Bioresour Technol. 2015 May;184:222-229. doi: 10.1016/j.biortech.2014.10.074. Epub 2014 Oct 24.
7
Biomass and lipid induction strategies in microalgae for biofuel production and other applications.
Microb Cell Fact. 2019 Oct 21;18(1):178. doi: 10.1186/s12934-019-1228-4.
8
Algae as green energy reserve: Technological outlook on biofuel production.
Chemosphere. 2020 Mar;242:125079. doi: 10.1016/j.chemosphere.2019.125079. Epub 2019 Oct 14.
9
Mechanism and challenges in commercialisation of algal biofuels.
Bioresour Technol. 2011 Jan;102(1):26-34. doi: 10.1016/j.biortech.2010.06.057. Epub 2010 Jul 6.
10
Ecological Engineering Helps Maximize Function in Algal Oil Production.
Appl Environ Microbiol. 2018 Jul 17;84(15). doi: 10.1128/AEM.00953-18. Print 2018 Aug 1.

引用本文的文献

5
Direct extraction of astaxanthin from the microalgae using liquid-liquid chromatography.
RSC Adv. 2019 Jul 23;9(40):22779-22789. doi: 10.1039/c9ra03263k.
7
Potential Application of Algae in Biodegradation of Phenol: A Review and Bibliometric Study.
Plants (Basel). 2021 Dec 6;10(12):2677. doi: 10.3390/plants10122677.
8
Recent Advancements and Future Perspectives of Microalgae-Derived Pharmaceuticals.
Mar Drugs. 2021 Dec 12;19(12):703. doi: 10.3390/md19120703.
9
Enabling large-scale production of algal oil in continuous output mode.
iScience. 2021 Jun 17;24(7):102743. doi: 10.1016/j.isci.2021.102743. eCollection 2021 Jul 23.
10
Isolation of Several Indigenous Microalgae from Kallar Kahar Lake, Chakwal Pakistan.
Iran J Biotechnol. 2020 Jul 1;18(3):e2214. doi: 10.30498/IJB.2020.122025.2214. eCollection 2020 Jul.

本文引用的文献

2
Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable.
Biotechnol Adv. 2009 Jul-Aug;27(4):409-16. doi: 10.1016/j.biotechadv.2009.03.001. Epub 2009 Mar 14.
3
The Glass Menagerie: diatoms for novel applications in nanotechnology.
Trends Biotechnol. 2009 Feb;27(2):116-27. doi: 10.1016/j.tibtech.2008.11.003. Epub 2009 Jan 23.
4
Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level.
Appl Microbiol Biotechnol. 2009 Jan;81(6):1141-8. doi: 10.1007/s00253-008-1740-7. Epub 2008 Oct 21.
5
Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans.
Appl Microbiol Biotechnol. 2008 Dec;81(4):629-36. doi: 10.1007/s00253-008-1681-1. Epub 2008 Sep 16.
6
Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers.
Appl Microbiol Biotechnol. 2008 Dec;81(3):431-40. doi: 10.1007/s00253-008-1660-6. Epub 2008 Aug 29.
9
Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts.
Bioresour Technol. 2008 Dec;99(18):8752-8. doi: 10.1016/j.biortech.2008.04.038. Epub 2008 May 27.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验