Suppr超能文献

Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction.

作者信息

Youn J H, Gulve E A, Holloszy J O

机构信息

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

出版信息

Am J Physiol. 1991 Mar;260(3 Pt 1):C555-61. doi: 10.1152/ajpcell.1991.260.3.C555.

Abstract

In this study we investigated the possibility that an increase in cytoplasmic Ca2+ concentration that is too low to cause muscle contraction can induce an increase in glucose transport activity in skeletal muscle. The compound N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), which induces Ca2+ release from the sarcoplasmic reticulum (SR), caused a dose-dependent increase in tension in rat epitrochlearis muscles at concentrations more than approximately 200 microM. Although 100 microM W-7 did not increase muscle tension, it accelerated loss of preloaded 45Ca2+. Glucose transport activity, measured with the nonmetabolizable glucose analogue 3-O-methylglucose, increased sixfold in muscles treated for 100 min with 50 microM W-7 (P less than 0.001) and eightfold in response to 100 microM W-7 (P less than 0.001). The increase in glucose transport activity was completely blocked with 25 microM cytochalasin B. There was no decrease in ATP or creatine phosphate concentrations ([approximately P]) in muscles incubated with 50 microM W-7. Dantrolene (25 microM), which blocks Ca2+ release from the SR, blocked the effects of W-7 both on 45Ca2+ release and on glucose transport activity. 9-Aminoacridine, another inhibitor of Ca2+ release from the SR, also blocked the stimulation of hexose transport by W-7. Caffeine, a compound structurally unrelated to W-7 that also releases Ca2+ from the SR, also increased glucose transport activity. Incubation of muscles with 3 mM caffeine for 30 min, which did not cause contraction or lower [approximately P], induced a threefold increase in 3-O-methylglucose transport (P less than 0.001). These results provide evidence suggesting that an increase in cytoplasmic Ca2+ too low to cause contraction or [approximately P] depletion can bring about an increase in glucose transport activity in skeletal muscle.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验