Institute for Micromanufacturing and Department of Biomedical Engineering, Louisiana Tech University, 911 Hergot Avenue, Ruston, LA 71272, USA.
Acta Biomater. 2010 Jun;6(6):2132-9. doi: 10.1016/j.actbio.2009.12.036. Epub 2009 Dec 24.
Physiological tissues, including brain and other organs, have three-dimensional (3-D) aspects that need to be supported to model them in vitro. Here we report the use of cellulose microfibers combined with cross-linked gelatin to make biocompatible porous microscaffolds for the sustained growth of brain cell and human mesenchymal stem cells (hMSCs) in 3-D structure. Live imaging using confocal microscopy indicated that 3-D microscaffolds composed of gelatin or cellulose fiber/gelatin both supported brain cell adhesion and growth for 16days in vitro. Cellulose microfiber/gelatin composites containing up to 75% cellulose fibers can withstand a higher mechanical load than gelatin alone, and composites also provided linear pathways along which brain cells could grow compared to more clumped cell growth in gelatin alone. Therefore, the bulk cellulose microfiber provides a novel skeleton in this new scaffold material. Cellulose fiber/gelatin scaffold supported hMSCs growth and extracellular matrix formation. hMSCs osteogenic and adipogenic assays indicated that hMSCs cultured in cellulose fiber/gelatin composite preserved the multilineage differentiation potential. As natural, biocompatible components, the combination of gelatin and cellulose microfibers, fabricated into 3-D matrices, may therefore provide optimal porosity and tensile strength for long-term maintenance and observation of cells.
生理组织,包括大脑和其他器官,具有需要支持的三维(3-D)方面,以便在体外对其进行建模。在这里,我们报告了使用纤维素微纤维与交联明胶结合来制造生物相容性多孔微支架,以支持脑细胞和人骨髓间充质干细胞(hMSC)在 3-D 结构中持续生长。使用共聚焦显微镜的活细胞成像表明,由明胶或纤维素纤维/明胶组成的 3-D 微支架都支持脑细胞在体外粘附和生长 16 天。含有高达 75%纤维素纤维的纤维素微纤维/明胶复合材料能够承受比单独明胶更高的机械负荷,并且与单独明胶中更聚集的细胞生长相比,复合材料还提供了脑细胞可以生长的线性途径。因此,在这种新型支架材料中,块状纤维素微纤维提供了一种新的骨架。纤维素纤维/明胶支架支持 hMSC 的生长和细胞外基质形成。hMSC 成骨和成脂检测表明,在纤维素纤维/明胶复合材料中培养的 hMSC 保持了多能分化潜能。作为天然的、生物相容的成分,明胶和纤维素微纤维的组合制成 3-D 基质,因此可为细胞的长期维持和观察提供最佳的孔隙率和拉伸强度。