高分辨率立体容积可视化小鼠精氨酸加压素系统。

High resolution stereoscopic volume visualization of the mouse arginine vasopressin system.

机构信息

Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.

出版信息

J Neurosci Methods. 2010 Mar 15;187(1):41-5. doi: 10.1016/j.jneumeth.2009.12.011. Epub 2009 Dec 29.

Abstract

New imaging technologies have increased our capabilities to resolve three-dimensional structures from microscopic samples. Laser-scanning confocal microscopy is particularly amenable to this task because it allows the researcher to optically section biological samples, creating three-dimensional image volumes. However, a number of problems arise when studying neural tissue samples. These include data set size, physical scanning restrictions, volume registration and display. To deal with these issues, we undertook large-scale confocal scanning microscopy in order to visualize neural networks spanning multiple tissue sections. We demonstrate a technique to create and visualize a three-dimensional digital reconstruction of the hypothalamic arginine vasopressin neuroendocrine system in the male mouse. The generated three-dimensional data included a volume of tissue that measures 4.35 mm x 2.6 mm x 1.4mm with a voxel resolution of 1.2 microm. The dataset matrix included 3508 x 2072 x 700 pixels and was a composite of 19,600 optical sections. Once reconstructed into a single volume, the data is suitable for interactive stereoscopic projection. Stereoscopic imaging provides greater insight and understanding of spatial relationships in neural tissues' inherently three-dimensional structure. This technique provides a model approach for the development of data sets that can provide new and informative volume rendered views of brain structures. This study affirms the value of stereoscopic volume-based visualization in neuroscience research and education, and the feasibility of creating large-scale high resolution interactive three-dimensional reconstructions of neural tissue from microscopic imagery.

摘要

新的成像技术提高了我们从微观样本中解析三维结构的能力。激光扫描共聚焦显微镜特别适合这项任务,因为它允许研究人员对生物样本进行光学切片,创建三维图像体积。然而,在研究神经组织样本时会出现许多问题。这些问题包括数据集大小、物理扫描限制、体积配准和显示。为了解决这些问题,我们进行了大规模的共聚焦扫描显微镜检查,以便可视化跨越多个组织切片的神经网络。我们展示了一种创建和可视化雄性小鼠下丘脑精氨酸加压素神经内分泌系统三维数字重建的技术。生成的三维数据包括一个体积为 4.35 毫米 x 2.6 毫米 x 1.4 毫米的组织,体素分辨率为 1.2 微米。数据集矩阵包括 3508 x 2072 x 700 像素,由 19600 个光学切片组成。一旦重建为单个体积,数据就适合交互式立体投影。立体成像提供了对神经组织固有三维结构中空间关系的更深入理解。这项技术为数据集的开发提供了一种模型方法,可以提供新的、有信息量的脑结构体积渲染视图。这项研究肯定了基于立体的可视化在神经科学研究和教育中的价值,以及从微观图像创建大规模高分辨率交互式三维神经组织重建的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索