School of Public Health, Wuhan University, 185 Donghu Rd, Wuhan, Hubei 430071, China.
Chem Biol Interact. 2010 Mar 19;184(1-2):207-11. doi: 10.1016/j.cbi.2009.12.024. Epub 2009 Dec 29.
Benzene causes hematotoxicity and leukemia in humans. To analyze benzene-caused aberrant gene expression, we examined differential gene expression by microarray analysis of peripheral mononuclear blood cells from seven workers diagnosed with benzene poisoning and seven matched controls. Twenty-two genes were found up-regulated and 18 down-regulated in benzene patients compared with controls. Here we report the characterization of two benzene-regulated genes. CYP4F3A, which encodes the leukotriene B(4) (LTB(4)) omega-hydroxylase, is important for inactivation of LTB(4) in neutrophils. CYP4F3A mRNA was found elevated in all patients; moreover, CYP4F3A mRNA and protein were induced by benzene metabolite phenol in HL-60 and K562 cells as well as ex vivo in human peripheral neutrophils. Silencing of CYP4F3A in HL-60 cells by lentiviral delivery of CYP4F3A-specific siRNA reduced cell survival to 56%, 44%, 22%, 14%, and 3% at 3, 4, 5, 6, and 7 days, respectively; the results suggest that CYP4F3A is a critical positive regulator of HL-60 proliferation. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) regulates non-homologous end joining (NHEJ) in DNA double strand break (DSB) repair. DNA-PKcs mRNA was found consistently increased in the patients and DNA-PKcs mRNA and protein were induced by hydroquinone in HL-60 cells. In a DSB model, hydroquinone induced the formation of gamma-H2AX foci, a marker of DSBs, in HL-60 cells. The findings indicate that hydroquinone induces DSBs and induction correlates with elevated levels of DNA-PKcs and NHEJ. Similar results were obtained in K562 cells treated with phenol. Since NHEJ is error-prone, induction of DNA-PKcs and NHEJ may contribute to mutagenesis and leukemia by benzene. To our knowledge, the study demonstrated for the first time that benzene and metabolites induce CYP4F3A and DNA-PKcs both in vivo and in vitro. Induction of the genes may play a role in the pathogenesis of benzene hematotoxicity and serve as biomarkers of benzene exposure.
苯会导致人类血液毒性和白血病。为了分析苯引起的异常基因表达,我们通过对 7 名被诊断为苯中毒的工人和 7 名匹配对照者的外周血单核细胞进行微阵列分析,检测了差异基因表达。与对照组相比,苯患者有 22 个基因上调,18 个基因下调。在这里,我们报告了两个苯调节基因的特征。编码白三烯 B4 (LTB4)ω-羟化酶的 CYP4F3A 对于中性粒细胞中 LTB4 的失活很重要。所有患者的 CYP4F3A mRNA 均升高;此外,苯代谢物苯酚在 HL-60 和 K562 细胞以及人外周血中性粒细胞中诱导 CYP4F3A mRNA 和蛋白表达。通过慢病毒递送 CYP4F3A 特异性 siRNA 沉默 HL-60 细胞中的 CYP4F3A 可分别使细胞存活率降低至 3、4、5、6 和 7 天时的 56%、44%、22%、14%和 3%;结果表明 CYP4F3A 是 HL-60 增殖的关键正调控因子。DNA 依赖性蛋白激酶催化亚基(DNA-PKcs)调节 DNA 双链断裂(DSB)修复中的非同源末端连接(NHEJ)。患者中一致发现 DNA-PKcs mRNA 增加,并且苯酚在 HL-60 细胞中诱导 DNA-PKcs mRNA 和蛋白表达。在 DSB 模型中,苯酚在 HL-60 细胞中诱导γ-H2AX 焦点的形成,γ-H2AX 焦点是 DSB 的标志物。这些发现表明,苯酚诱导 DSBs,并且诱导与 DNA-PKcs 和 NHEJ 的升高水平相关。用苯酚处理 K562 细胞也得到了类似的结果。由于 NHEJ 易出错,因此 DNA-PKcs 和 NHEJ 的诱导可能导致苯引起的突变和白血病。据我们所知,该研究首次证明了苯及其代谢物在体内和体外均诱导 CYP4F3A 和 DNA-PKcs。基因的诱导可能在苯血液毒性的发病机制中起作用,并可作为苯暴露的生物标志物。