Suppr超能文献

与苯和马拉硫磷职业接触相关的生物标志物的网络分析。

Network Analysis of Biomarkers Associated with Occupational Exposure to Benzene and Malathion.

机构信息

Studies Center of Worker's Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-210, RJ, Brazil.

Center for Mathematics, Computation and Cognition, Federal University of ABC, Santo André 09210-580, SP, Brazil.

出版信息

Int J Mol Sci. 2023 May 28;24(11):9415. doi: 10.3390/ijms24119415.

Abstract

Complex diseases are associated with the effects of multiple genes, proteins, and biological pathways. In this context, the tools of Network Medicine are compatible as a platform to systematically explore not only the molecular complexity of a specific disease but may also lead to the identification of disease modules and pathways. Such an approach enables us to gain a better understanding of how environmental chemical exposures affect the function of human cells, providing better perceptions about the mechanisms involved and helping to monitor/prevent exposure and disease to chemicals such as benzene and malathion. We selected differentially expressed genes for exposure to benzene and malathion. The construction of interaction networks was carried out using GeneMANIA and STRING. Topological properties were calculated using MCODE, BiNGO, and CentiScaPe, and a Benzene network composed of 114 genes and 2415 interactions was obtained. After topological analysis, five networks were identified. In these subnets, the most interconnected nodes were identified as: IL-8, KLF6, KLF4, JUN, SERTAD1, and MT1H. In the Malathion network, composed of 67 proteins and 134 interactions, HRAS and STAT3 were the most interconnected nodes. Path analysis, combined with various types of high-throughput data, reflects biological processes more clearly and comprehensively than analyses involving the evaluation of individual genes. We emphasize the central roles played by several important hub genes obtained by exposure to benzene and malathion.

摘要

复杂疾病与多个基因、蛋白质和生物途径的影响有关。在这种情况下,网络医学的工具可以作为一个平台,系统地探索不仅是特定疾病的分子复杂性,还可能导致疾病模块和途径的识别。这种方法使我们能够更好地理解环境化学暴露如何影响人类细胞的功能,更好地了解所涉及的机制,并有助于监测/预防苯和马拉硫磷等化学物质的暴露和疾病。我们选择了苯和马拉硫磷暴露的差异表达基因。使用 GeneMANIA 和 STRING 构建相互作用网络。使用 MCODE、BiNGO 和 CentiScaPe 计算拓扑性质,并获得由 114 个基因和 2415 个相互作用组成的苯网络。经过拓扑分析,确定了五个网络。在这些子网中,最相互连接的节点被确定为:IL-8、KLF6、KLF4、JUN、SERTAD1 和 MT1H。在由 67 种蛋白质和 134 种相互作用组成的马拉硫磷网络中,HRAS 和 STAT3 是最相互连接的节点。路径分析结合各种类型的高通量数据,比涉及评估单个基因的分析更清晰、更全面地反映生物过程。我们强调了苯和马拉硫磷暴露后获得的几个重要枢纽基因所扮演的核心角色。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9539/10253471/271bb0b778a2/ijms-24-09415-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验