文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

谷胱甘肽在维持哺乳动物细胞氧化还原平衡中的关键作用:谷胱甘肽通过形成共轭物进行解毒的机制及意义

The Key Role of GSH in Keeping the Redox Balance in Mammalian Cells: Mechanisms and Significance of GSH in Detoxification via Formation of Conjugates.

作者信息

Georgiou-Siafis Sofia K, Tsiftsoglou Asterios S

机构信息

Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece.

出版信息

Antioxidants (Basel). 2023 Nov 1;12(11):1953. doi: 10.3390/antiox12111953.


DOI:10.3390/antiox12111953
PMID:38001806
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10669396/
Abstract

Glutathione (GSH) is a ubiquitous tripeptide that is biosynthesized in situ at high concentrations (1-5 mM) and involved in the regulation of cellular homeostasis via multiple mechanisms. The main known action of GSH is its antioxidant capacity, which aids in maintaining the redox cycle of cells. To this end, GSH peroxidases contribute to the scavenging of various forms of ROS and RNS. A generally underestimated mechanism of action of GSH is its direct nucleophilic interaction with electrophilic compounds yielding thioether GSH S-conjugates. Many compounds, including xenobiotics (such as NAPQI, simvastatin, cisplatin, and barbital) and intrinsic compounds (such as menadione, leukotrienes, prostaglandins, and dopamine), form covalent adducts with GSH leading mainly to their detoxification. In the present article, we wish to present the key role and significance of GSH in cellular redox biology. This includes an update on the formation of GSH-S conjugates or GSH adducts with emphasis given to the mechanism of reaction, the dependence on GST (GSH S-transferase), where this conjugation occurs in tissues, and its significance. The uncovering of the GSH adducts' formation enhances our knowledge of the human metabolome. GSH-hematin adducts were recently shown to have been formed spontaneously in multiples isomers at hemolysates, leading to structural destabilization of the endogenous toxin, hematin (free heme), which is derived from the released hemoglobin. Moreover, hemin (the form of oxidized heme) has been found to act through the Kelch-like ECH associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor-2 (Nrf2) signaling pathway as an epigenetic modulator of GSH metabolism. Last but not least, the implications of the genetic defects in GSH metabolism, recorded in hemolytic syndromes, cancer and other pathologies, are presented and discussed under the framework of conceptualizing that GSH S-conjugates could be regarded as signatures of the cellular metabolism in the diseased state.

摘要

谷胱甘肽(GSH)是一种普遍存在的三肽,可在体内以高浓度(1 - 5 mM)进行生物合成,并通过多种机制参与细胞内稳态的调节。GSH已知的主要作用是其抗氧化能力,有助于维持细胞的氧化还原循环。为此,谷胱甘肽过氧化物酶有助于清除各种形式的活性氧(ROS)和活性氮(RNS)。GSH一种普遍被低估的作用机制是其与亲电化合物直接发生亲核相互作用,生成硫醚型谷胱甘肽S - 共轭物。许多化合物,包括外源性物质(如对乙酰氨基酚代谢产物NAPQI、辛伐他汀、顺铂和巴比妥)和内源性化合物(如甲萘醌、白三烯、前列腺素和多巴胺),与GSH形成共价加合物,主要导致它们的解毒。在本文中,我们希望阐述GSH在细胞氧化还原生物学中的关键作用和意义。这包括对GSH - S共轭物或GSH加合物形成的最新研究,重点是反应机制、对谷胱甘肽S - 转移酶(GST)的依赖性、这种共轭作用在组织中的发生位置及其意义。对GSH加合物形成的揭示增强了我们对人类代谢组的认识。最近发现,谷胱甘肽 - 血红素加合物在溶血产物中以多种异构体形式自发形成,导致内源性毒素血红素(游离血红素,源自释放的血红蛋白)的结构不稳定。此外,已发现血红素(氧化型血红素形式)通过类 Kelch 样 ECH 相关蛋白1(Keap1)- 核因子红细胞2相关因子2(Nrf2)信号通路作为GSH代谢的表观遗传调节剂。最后但同样重要的是,在将GSH S - 共轭物视为疾病状态下细胞代谢特征的概念框架下,介绍并讨论了溶血性综合征、癌症和其他病理中记录的GSH代谢遗传缺陷的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8970/10669396/5ed04a692f5d/antioxidants-12-01953-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8970/10669396/7ba9a367cfa0/antioxidants-12-01953-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8970/10669396/79ae6f5d6174/antioxidants-12-01953-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8970/10669396/5ed04a692f5d/antioxidants-12-01953-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8970/10669396/7ba9a367cfa0/antioxidants-12-01953-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8970/10669396/79ae6f5d6174/antioxidants-12-01953-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8970/10669396/5ed04a692f5d/antioxidants-12-01953-g003.jpg

相似文献

[1]
The Key Role of GSH in Keeping the Redox Balance in Mammalian Cells: Mechanisms and Significance of GSH in Detoxification via Formation of Conjugates.

Antioxidants (Basel). 2023-11-1

[2]
Glutathione-Hemin/Hematin Adduct Formation to Disintegrate Cytotoxic Oxidant Hemin/Hematin in Human K562 Cells and Red Blood Cells' Hemolysates: Impact of Glutathione on the Hemolytic Disorders and Homeostasis.

Antioxidants (Basel). 2022-9-30

[3]
Reprint of: Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs.

Free Radic Biol Med. 2013-11-18

[4]
Endogenous glutathione adducts.

Curr Drug Metab. 2006-12

[5]
Activation of KEAP1/NRF2 stress signaling involved in the molecular basis of hemin-induced cytotoxicity in human pro-erythroid K562 cells.

Biochem Pharmacol. 2020-3-7

[6]
Redox Regulation of Xenobiotics by Reactive Sulfur and Supersulfide Species.

Antioxid Redox Signal. 2024-4

[7]
Nrf2 activation enhances biliary excretion of sulfobromophthalein by inducing glutathione-S-transferase activity.

Toxicol Sci. 2009-5

[8]
Phase II enzymes and bioactivation.

Can J Physiol Pharmacol. 1995-10

[9]
Stereoselective conjugation of prostaglandin A2 and prostaglandin J2 with glutathione, catalyzed by the human glutathione S-transferases A1-1, A2-2, M1a-1a, and P1-1.

Chem Res Toxicol. 1997-3

[10]
Modulatory role of dietary polyunsaturated fatty acids in Nrf2-mediated redox homeostasis.

Prog Lipid Res. 2020-11

引用本文的文献

[1]
Nicotinamide and Pyridoxine in Muscle Aging: Nutritional Regulation of Redox, Inflammation, and Regeneration.

Antioxidants (Basel). 2025-7-25

[2]
Mechanism and application of yeast and its culture in regulating intestinal antioxidant defense in ruminants.

Front Vet Sci. 2025-8-7

[3]
Smartphone-integrated colorimetric nanosensor for azodicarbonamide detection in flour using BSA/MnO₂ nanoprobes.

Mikrochim Acta. 2025-8-19

[4]
Alterations in GSH/GSSG and CyS/CySS redox status in small cell lung cancer patients undergoing chemotherapy.

Discov Oncol. 2025-7-30

[5]
VapC toxins promote the pathogenesis of Rickettsia heilongjiangensis by cleaving essential RNAs from both Rickettsia and its host.

PLoS Pathog. 2025-7-30

[6]
Thymol and menthol as anaesthetics for short transportation of zebrafish larva.

Fish Physiol Biochem. 2025-7-30

[7]
Bioactive compounds in Raphanus sativus: mechanisms of apoptosis, anti-angiogenesis, cell cycle arrest and beyond in cancer prevention and treatment.

Med Oncol. 2025-7-13

[8]
Curcumin-Induced Apoptotic Cell Death in Human Glioma Cells Is Enhanced by Clusterin Deficiency.

Pharmaceutics. 2025-5-22

[9]
Restoring Glutathione Homeostasis in Glycation-Related Eye Diseases: Mechanistic Insights and Therapeutic Interventions Beyond VEGF Inhibition.

Antioxidants (Basel). 2025-6-14

[10]
Mitochondrial fusion controls the development of specialized mitochondrial structure and metabolism in rod photoreceptor cells.

bioRxiv. 2025-5-26

本文引用的文献

[1]
The Reactive Species Interactome in Red Blood Cells: Oxidants, Antioxidants, and Molecular Targets.

Antioxidants (Basel). 2023-9-7

[2]
An overview of arsenic trioxide-involved combined treatment algorithms for leukemia: basic concepts and clinical implications.

Cell Death Discov. 2023-7-27

[3]
Molecular Taphonomy of Heme: Chemical Degradation of Hemin under Presumed Fossilization Conditions.

Molecules. 2023-6-21

[4]
Co-administration of angiotensin II and simvastatin triggers kidney injury upon heme oxygenase-1 deficiency.

Free Radic Biol Med. 2023-8-20

[5]
Cellular Compartmentalization, Glutathione Transport and Its Relevance in Some Pathologies.

Antioxidants (Basel). 2023-3-29

[6]
The antioxidant glutathione.

Vitam Horm. 2023

[7]
Landomycins as glutathione-depleting agents and natural fluorescent probes for cellular Michael adduct-dependent quinone metabolism.

Commun Chem. 2021-11-25

[8]
Oxidants and Antioxidants in the Redox Biochemistry of Human Red Blood Cells.

ACS Omega. 2022-12-28

[9]
Glutathione-Hemin/Hematin Adduct Formation to Disintegrate Cytotoxic Oxidant Hemin/Hematin in Human K562 Cells and Red Blood Cells' Hemolysates: Impact of Glutathione on the Hemolytic Disorders and Homeostasis.

Antioxidants (Basel). 2022-9-30

[10]
Glutathione-Mediated Conjugation of Anticancer Drugs: An Overview of Reaction Mechanisms and Biological Significance for Drug Detoxification and Bioactivation.

Molecules. 2022-8-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索