Warrens Matthijs J
Psychometrics and Research Methodology Group, Leiden University Institute for Psychological Research, Leiden University, Wassenaarseweg 52, P.O. Box 9555, 2300 RB Leiden, The Netherlands.
Psychometrika. 2008 Sep;73(3):487-502. doi: 10.1007/s11336-008-9059-y. Epub 2008 Mar 1.
This paper studies correction for chance in coefficients that are linear functions of the observed proportion of agreement. The paper unifies and extends various results on correction for chance in the literature. A specific class of coefficients is used to illustrate the results derived in this paper. Coefficients in this class, e.g. the simple matching coefficient and the Dice/Sørenson coefficient, become equivalent after correction for chance, irrespective of what expectation is used. The coefficients become either Cohen's kappa, Scott's pi, Mak's rho, Goodman and Kruskal's lambda, or Hamann's eta, depending on what expectation is considered appropriate. Both a multicategorical generalization and a multivariate generalization are discussed.
本文研究了作为一致性观察比例线性函数的系数的机遇校正问题。本文统一并扩展了文献中关于机遇校正的各种结果。使用一类特定的系数来说明本文推导的结果。这类系数,例如简单匹配系数和戴斯/索伦森系数,在进行机遇校正后变得等效,而与使用何种期望无关。根据所认为合适的期望,这些系数会变为科恩的卡帕系数、斯科特的派系数、马克的柔系数、古德曼和克鲁斯卡尔的拉姆达系数或哈曼的艾塔系数。同时还讨论了多分类推广和多变量推广。