Warrens Matthijs J
Psychometrics and Research Methodology Group, Leiden University Institute for Psychological Research, Leiden University, Wassenaarseweg 52, P.O. Box 9555, 2300 RB Leiden, The Netherlands.
Psychometrika. 2008 Dec;73(4):777-789. doi: 10.1007/s11336-008-9070-3. Epub 2008 Jul 23.
We discuss properties that association coefficients may have in general, e.g., zero value under statistical independence, and we examine coefficients for 2x2 tables with respect to these properties. Furthermore, we study a family of coefficients that are linear transformations of the observed proportion of agreement given the marginal probabilities. This family includes the phi coefficient and Cohen's kappa. The main result is that the linear transformations that set the value under independence at zero and the maximum value at unity, transform all coefficients in this family into the same underlying coefficient. This coefficient happens to be Loevinger's H.
我们讨论了关联系数通常可能具有的性质,例如在统计独立性下为零值,并针对这些性质研究了2×2列联表的系数。此外,我们研究了一族系数,它们是在给定边际概率的情况下观测一致比例的线性变换。这一族系数包括phi系数和科恩kappa系数。主要结果是,将独立性下的值设为零且最大值设为一的线性变换,会将这一族中的所有系数变换为同一个基础系数。这个系数恰好是洛温杰的H系数。