Suppr超能文献

评估多种药物相互作用的相互作用指数的置信区间

Confidence Intervals of Interaction Index for Assessing Multiple Drug Interaction.

作者信息

Lee J Jack, Kong Maiying

机构信息

Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, TX (

出版信息

Stat Biopharm Res. 2009 Feb 1;1(1):4-17. doi: 10.1198/sbr.2009.0001.

Abstract

Studies of interactions among biologically active agents have become increasingly important in many branches of biomedical research. We consider that the Loewe additivity model is one of the best general reference models for defining drug interactions. Based on the Loewe additivity model, synergy occurs when the interaction index is less than one, and antagonism occurs when interaction index is greater than one. Starting from the Loewe additivity model and the marginal dose-effect curve for each drug involved in a combination, we first present a procedure to estimate the interaction index and its associated confidence interval at a combination dose with observed effects. Following Chou and Talalay's method for assessing drug interaction based on the plot of interaction indices versus effects for combination doses at a fixed ray, we then construct a pointwise (1-alpha)x100% confidence bound for the curve of interaction indices versus effects. We found that these methods work better on the logarithm transformed scale than on the untransformed scale of the interaction index. We provide simulations and case studies to illustrate the performances of these two procedures, and present their pros and cons. We also provide S-Plus/R code to facilitate the implementation of these two procedures.

摘要

生物活性物质之间相互作用的研究在生物医学研究的许多分支中变得越来越重要。我们认为Loewe加和模型是定义药物相互作用的最佳通用参考模型之一。基于Loewe加和模型,当相互作用指数小于1时会出现协同作用,而当相互作用指数大于1时会出现拮抗作用。从Loewe加和模型以及组合中每种药物的边际剂量效应曲线出发,我们首先提出一种在具有观察效应的组合剂量下估计相互作用指数及其相关置信区间的方法。按照Chou和Talalay基于固定射线上组合剂量的相互作用指数与效应的关系图评估药物相互作用的方法,我们随后构建了相互作用指数与效应曲线的逐点(1-α)×100%置信界。我们发现这些方法在相互作用指数的对数变换尺度上比在未变换尺度上效果更好。我们提供模拟和案例研究来说明这两种方法的性能,并阐述它们的优缺点。我们还提供S-Plus/R代码以方便这两种方法的实施。

相似文献

1
Confidence Intervals of Interaction Index for Assessing Multiple Drug Interaction.
Stat Biopharm Res. 2009 Feb 1;1(1):4-17. doi: 10.1198/sbr.2009.0001.
2
Interaction index and different methods for determining drug interaction in combination therapy.
J Biopharm Stat. 2007;17(3):461-80. doi: 10.1080/10543400701199593.
3
Parallel dose-response curves in combination experiments.
Bull Math Biol. 1998 Mar;60(2):197-213. doi: 10.1006/bulm.1997.0009.
5
Additive Dose Response Models: Explicit Formulation and the Loewe Additivity Consistency Condition.
Front Pharmacol. 2018 Feb 6;9:31. doi: 10.3389/fphar.2018.00031. eCollection 2018.
6
Investigation of the robustness of two models for assessing synergy in pre-clinical drug combination studies.
Pharm Stat. 2013 Sep-Oct;12(5):300-8. doi: 10.1002/pst.1583. Epub 2013 Jul 30.
9
Applying Emax model and bivariate thin plate splines to assess drug interactions.
Front Biosci (Elite Ed). 2010 Jan 1;2(1):279-92. doi: 10.2741/e90.
10
Assessing the Effect of Mycotoxin Combinations: Which Mathematical Model Is (the Most) Appropriate?
Toxins (Basel). 2020 Feb 29;12(3):153. doi: 10.3390/toxins12030153.

引用本文的文献

4
Assessing the Effect of Mycotoxin Combinations: Which Mathematical Model Is (the Most) Appropriate?
Toxins (Basel). 2020 Feb 29;12(3):153. doi: 10.3390/toxins12030153.
5
Drug Combinations: Mathematical Modeling and Networking Methods.
Pharmaceutics. 2019 May 2;11(5):208. doi: 10.3390/pharmaceutics11050208.
6
Salinomycin decreases feline sarcoma and carcinoma cell viability when combined with doxorubicin.
BMC Vet Res. 2019 Jan 24;15(1):36. doi: 10.1186/s12917-019-1780-5.
7
Sensitivity of imatinib-resistant T315I BCR-ABL CML to a synergistic combination of ponatinib and forskolin treatment.
Tumour Biol. 2016 Sep;37(9):12643-12654. doi: 10.1007/s13277-016-5179-7. Epub 2016 Jul 21.
8
Nonlinear response surface in the study of interaction analysis of three combination drugs.
Biom J. 2017 Jan;59(1):9-24. doi: 10.1002/bimj.201500021. Epub 2016 May 17.
9
Analysis of drug combinations: current methodological landscape.
Pharmacol Res Perspect. 2015 Jun;3(3):e00149. doi: 10.1002/prp2.149. Epub 2015 May 20.
10
drexplorer: A tool to explore dose-response relationships and drug-drug interactions.
Bioinformatics. 2015 May 15;31(10):1692-4. doi: 10.1093/bioinformatics/btv028. Epub 2015 Jan 18.

本文引用的文献

1
Emax model and interaction index for assessing drug interaction in combination studies.
Front Biosci (Elite Ed). 2010 Jan 1;2(2):582-601. doi: 10.2741/e116.
2
A semiparametric response surface model for assessing drug interaction.
Biometrics. 2008 Jun;64(2):396-405. doi: 10.1111/j.1541-0420.2007.00882.x. Epub 2007 Sep 26.
3
Interaction index and different methods for determining drug interaction in combination therapy.
J Biopharm Stat. 2007;17(3):461-80. doi: 10.1080/10543400701199593.
4
A generalized response surface model with varying relative potency for assessing drug interaction.
Biometrics. 2006 Dec;62(4):986-95. doi: 10.1111/j.1541-0420.2006.00579.x.
7
Multiple drug effect analysis with confidence interval.
Antiviral Res. 1994 Sep;25(1):1-11. doi: 10.1016/0166-3542(94)90089-2.
10
The expected effect of a combination of agents: the general solution.
J Theor Biol. 1985 Jun 7;114(3):413-31. doi: 10.1016/s0022-5193(85)80176-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验