Suppr超能文献

三种联合用药相互作用分析研究中的非线性响应面

Nonlinear response surface in the study of interaction analysis of three combination drugs.

作者信息

Wan Wen, Pei Xin-Yan, Grant Steven, Birch Jeffrey B, Felthousen Jessica, Dai Yun, Fang Hong-Bin, Tan Ming, Sun Shumei

机构信息

Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA.

Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.

出版信息

Biom J. 2017 Jan;59(1):9-24. doi: 10.1002/bimj.201500021. Epub 2016 May 17.

Abstract

Few articles have been written on analyzing three-way interactions between drugs. It may seem to be quite straightforward to extend a statistical method from two-drugs to three-drugs. However, there may exist more complex nonlinear response surface of the interaction index (II) with more complex local synergy and/or local antagonism interspersed in different regions of drug combinations in a three-drug study, compared in a two-drug study. In addition, it is not possible to obtain a four-dimensional (4D) response surface plot for a three-drug study. We propose an analysis procedure to construct the dose combination regions of interest (say, the synergistic areas with II≤0.9). First, use the model robust regression method (MRR), a semiparametric method, to fit the entire response surface of the II, which allows to fit a complex response surface with local synergy/antagonism. Second, we run a modified genetic algorithm (MGA), a stochastic optimization method, many times with different random seeds, to allow to collect as many feasible points as possible that satisfy the estimated values of II≤0.9. Last, all these feasible points are used to construct the approximate dose regions of interest in a 3D. A case study with three anti-cancer drugs in an in vitro experiment is employed to illustrate how to find the dose regions of interest.

摘要

关于分析药物之间的三方相互作用的文章很少。将统计方法从两种药物扩展到三种药物似乎相当简单。然而,与双药研究相比,在三药研究中,相互作用指数(II)的响应面可能更复杂,在药物组合的不同区域散布着更复杂的局部协同和/或局部拮抗作用。此外,对于三药研究,不可能获得四维(4D)响应面图。我们提出了一种分析程序来构建感兴趣的剂量组合区域(例如,II≤0.9的协同区域)。首先,使用模型稳健回归方法(MRR),一种半参数方法,来拟合II的整个响应面,这允许拟合具有局部协同/拮抗作用的复杂响应面。其次,我们多次运行改进的遗传算法(MGA),一种随机优化方法,使用不同的随机种子,以收集尽可能多的满足II≤0.9估计值的可行点。最后,所有这些可行点用于在三维空间中构建近似的感兴趣剂量区域。通过一个在体外实验中使用三种抗癌药物的案例研究来说明如何找到感兴趣的剂量区域。

相似文献

3
A semiparametric response surface model for assessing drug interaction.一种用于评估药物相互作用的半参数响应面模型。
Biometrics. 2008 Jun;64(2):396-405. doi: 10.1111/j.1541-0420.2007.00882.x. Epub 2007 Sep 26.
6
10
Experimental design and statistical analysis for three-drug combination studies.三药联合研究的实验设计与统计分析
Stat Methods Med Res. 2017 Jun;26(3):1261-1280. doi: 10.1177/0962280215574320. Epub 2015 Mar 4.

本文引用的文献

1
Drug interaction: focusing on response surface models.药物相互作用:关注响应面模型。
Korean J Anesthesiol. 2010 May;58(5):421-34. doi: 10.4097/kjae.2010.58.5.421. Epub 2010 May 29.
4
8
Interactions between drugs and occupied receptors.药物与被占据受体之间的相互作用。
Pharmacol Ther. 2007 Jan;113(1):197-209. doi: 10.1016/j.pharmthera.2006.08.002. Epub 2006 Sep 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验