Suppr超能文献

一种用于变量选择的分组桥接方法。

A group bridge approach for variable selection.

作者信息

Huang Jian, Ma Shuange, Xie Huiliang, Zhang Cun-Hui

机构信息

Department of Statistics and Actuarial Science , University of Iowa , 221 Schaeffer Hall, Iowa City, Iowa 52242 , U.S.A.

出版信息

Biometrika. 2009 Jun;96(2):339-355. doi: 10.1093/biomet/asp020.

Abstract

In multiple regression problems when covariates can be naturally grouped, it is important to carry out feature selection at the group and within-group individual variable levels simultaneously. The existing methods, including the lasso and group lasso, are designed for either variable selection or group selection, but not for both. We propose a group bridge approach that is capable of simultaneous selection at both the group and within-group individual variable levels. The proposed approach is a penalized regularization method that uses a specially designed group bridge penalty. It has the oracle group selection property, in that it can correctly select important groups with probability converging to one. In contrast, the group lasso and group least angle regression methods in general do not possess such an oracle property in group selection. Simulation studies indicate that the group bridge has superior performance in group and individual variable selection relative to several existing methods.

摘要

在多元回归问题中,当协变量可以自然分组时,在组级别和组内个体变量级别同时进行特征选择非常重要。现有的方法,包括套索(lasso)和组套索,是为变量选择或组选择而设计的,但不是两者兼顾。我们提出了一种组桥接方法,它能够在组级别和组内个体变量级别同时进行选择。所提出的方法是一种惩罚正则化方法,它使用了专门设计的组桥接惩罚。它具有择一的组选择属性,即它能够以收敛到1的概率正确选择重要的组。相比之下,组套索和组最小角回归方法在组选择中一般不具有这样的择一属性。模拟研究表明,相对于几种现有方法,组桥接在组和个体变量选择方面具有优越的性能。

相似文献

1
4
ADAPTIVE ROBUST VARIABLE SELECTION.自适应鲁棒变量选择
Ann Stat. 2014 Feb 1;42(1):324-351. doi: 10.1214/13-AOS1191.
6
Quantile regression shrinkage and selection via the Lqsso.通过 Lqsso 进行分位数回归收缩和选择。
J Biopharm Stat. 2024 May;34(3):297-322. doi: 10.1080/10543406.2023.2198593. Epub 2023 Apr 9.

引用本文的文献

2
Gene-environment interaction analysis under the Cox model.Cox模型下的基因-环境相互作用分析。
Ann Inst Stat Math. 2023 Dec;75(6):931-948. doi: 10.1007/s10463-023-00871-9. Epub 2023 Apr 10.
3
Joint Screening for Ultra-High Dimensional Multi-Omics Data.超高维多组学数据的联合筛选
Bioengineering (Basel). 2024 Nov 25;11(12):1193. doi: 10.3390/bioengineering11121193.
5
Multi-task Learning with High-Dimensional Noisy Images.高维噪声图像的多任务学习
J Am Stat Assoc. 2024;119(545):650-663. doi: 10.1080/01621459.2022.2140052. Epub 2022 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验