Suppr超能文献

使用MM算法进行变量选择

Variable Selection using MM Algorithms.

作者信息

Hunter David R, Li Runze

机构信息

Department of Statistics, The Pennsylvania State University University Park, Pennsylvania 16802-2111, E-mail:

出版信息

Ann Stat. 2005;33(4):1617-1642. doi: 10.1214/009053605000000200.

Abstract

Variable selection is fundamental to high-dimensional statistical modeling. Many variable selection techniques may be implemented by maximum penalized likelihood using various penalty functions. Optimizing the penalized likelihood function is often challenging because it may be nondifferentiable and/or nonconcave. This article proposes a new class of algorithms for finding a maximizer of the penalized likelihood for a broad class of penalty functions. These algorithms operate by perturbing the penalty function slightly to render it differentiable, then optimizing this differentiable function using a minorize-maximize (MM) algorithm. MM algorithms are useful extensions of the well-known class of EM algorithms, a fact that allows us to analyze the local and global convergence of the proposed algorithm using some of the techniques employed for EM algorithms. In particular, we prove that when our MM algorithms converge, they must converge to a desirable point; we also discuss conditions under which this convergence may be guaranteed. We exploit the Newton-Raphson-like aspect of these algorithms to propose a sandwich estimator for the standard errors of the estimators. Our method performs well in numerical tests.

摘要

变量选择是高维统计建模的基础。许多变量选择技术可以通过使用各种惩罚函数的最大惩罚似然来实现。优化惩罚似然函数通常具有挑战性,因为它可能不可微和/或非凹。本文提出了一类新的算法,用于为广泛的惩罚函数找到惩罚似然的最大化者。这些算法通过对惩罚函数进行轻微扰动使其可微,然后使用最小化-最大化(MM)算法优化这个可微函数来运行。MM算法是著名的EM算法类的有用扩展,这一事实使我们能够使用一些用于EM算法的技术来分析所提出算法的局部和全局收敛性。特别是,我们证明了当我们的MM算法收敛时,它们必须收敛到一个理想点;我们还讨论了可以保证这种收敛的条件。我们利用这些算法类似牛顿-拉夫森的方面,为估计量的标准误差提出了一种三明治估计量。我们的方法在数值测试中表现良好。

相似文献

1
Variable Selection using MM Algorithms.
Ann Stat. 2005;33(4):1617-1642. doi: 10.1214/009053605000000200.
2
One-step Sparse Estimates in Nonconcave Penalized Likelihood Models.
Ann Stat. 2008 Aug 1;36(4):1509-1533. doi: 10.1214/009053607000000802.
3
Identifying optimal biomarker combinations for treatment selection through randomized controlled trials.
Clin Trials. 2015 Aug;12(4):348-56. doi: 10.1177/1740774515580126. Epub 2015 May 6.
4
Newton-Raphson Meets Sparsity: Sparse Learning Via a Novel Penalty and a Fast Solver.
IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):12057-12067. doi: 10.1109/TNNLS.2023.3251748. Epub 2024 Sep 3.
5
L1 penalized estimation in the Cox proportional hazards model.
Biom J. 2010 Feb;52(1):70-84. doi: 10.1002/bimj.200900028.
7
Penalized full likelihood approach to variable selection for Cox's regression model under nested case-control sampling.
Lifetime Data Anal. 2020 Apr;26(2):292-314. doi: 10.1007/s10985-019-09475-z. Epub 2019 May 7.
8
Three penalized EM-type algorithms for PET image reconstruction.
Comput Biol Med. 2012 Jun;42(6):714-23. doi: 10.1016/j.compbiomed.2012.04.004. Epub 2012 May 8.
10
Efficient methods for estimating constrained parameters with applications to lasso logistic regression.
Comput Stat Data Anal. 2008 Mar 15;52(7):3528-3542. doi: 10.1016/j.csda.2007.11.007.

引用本文的文献

1
Integrative analysis of high-dimensional quantile regression with contrasted penalization.
J Appl Stat. 2024 Dec 10;52(9):1760-1776. doi: 10.1080/02664763.2024.2438799. eCollection 2025.
2
Imputation-Based Variable Selection Method for Block-Wise Missing Data When Integrating Multiple Longitudinal Studies.
Mathematics (Basel). 2024 Apr;12(7). doi: 10.3390/math12070951. Epub 2024 Mar 23.
3
Penalized variable selection in multi-parameter regression survival modeling.
Stat Methods Med Res. 2023 Dec;32(12):2455-2471. doi: 10.1177/09622802231203322. Epub 2023 Oct 12.
4
Identifying oscillatory brain networks with hidden Gaussian graphical spectral models of MEEG.
Sci Rep. 2023 Jul 15;13(1):11466. doi: 10.1038/s41598-023-38513-y.
5
Feature Screening for High-Dimensional Variable Selection in Generalized Linear Models.
Entropy (Basel). 2023 May 26;25(6):851. doi: 10.3390/e25060851.
6
High-Performance Statistical Computing in the Computing Environments of the 2020s.
Stat Sci. 2022 Nov;37(4):494-518. doi: 10.1214/21-sts835. Epub 2022 Oct 13.
7
Variable selection using a smooth information criterion for distributional regression models.
Stat Comput. 2023;33(3):71. doi: 10.1007/s11222-023-10204-8. Epub 2023 Apr 21.
8
Variable selection in elliptical linear mixed model.
J Appl Stat. 2019 Dec 18;47(11):2025-2043. doi: 10.1080/02664763.2019.1702928. eCollection 2020.
9
Small area mean estimation after effect clustering.
J Appl Stat. 2019 Jul 30;47(4):602-623. doi: 10.1080/02664763.2019.1648390. eCollection 2020.
10
Variable selection under multicollinearity using modified log penalty.
J Appl Stat. 2019 Jul 3;47(2):201-230. doi: 10.1080/02664763.2019.1637829. eCollection 2020.

本文引用的文献

1
Variable selection for multivariate failure time data.
Biometrika. 2005;92(2):303-316. doi: 10.1093/biomet/92.2.303.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验