Suppr超能文献

对转录因子 CTCF 的聚(ADP-核糖)化位点进行突变分析,深入了解了其被聚(ADP-核糖)化调控的机制。

Mutational analysis of the poly(ADP-ribosyl)ation sites of the transcription factor CTCF provides an insight into the mechanism of its regulation by poly(ADP-ribosyl)ation.

机构信息

Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom.

出版信息

Mol Cell Biol. 2010 Mar;30(5):1199-216. doi: 10.1128/MCB.00827-09. Epub 2009 Dec 28.

Abstract

Poly(ADP-ribosyl)ation of the conserved multifunctional transcription factor CTCF was previously identified as important to maintain CTCF insulator and chromatin barrier functions. However, the molecular mechanism of this regulation and also the necessity of this modification for other CTCF functions remain unknown. In this study, we identified potential sites of poly(ADP-ribosyl)ation within the N-terminal domain of CTCF and generated a mutant deficient in poly(ADP-ribosyl)ation. Using this CTCF mutant, we demonstrated the requirement of poly(ADP-ribosyl)ation for optimal CTCF function in transcriptional activation of the p19ARF promoter and inhibition of cell proliferation. By using a newly generated isogenic insulator reporter cell line, the CTCF insulator function at the mouse Igf2-H19 imprinting control region (ICR) was found to be compromised by the CTCF mutation. The association and simultaneous presence of PARP-1 and CTCF at the ICR, confirmed by single and serial chromatin immunoprecipitation assays, were found to be independent of CTCF poly(ADP-ribosyl)ation. These results suggest a model of CTCF regulation by poly(ADP-ribosyl)ation whereby CTCF and PARP-1 form functional complexes at sites along the DNA, producing a dynamic reversible modification of CTCF. By using bioinformatics tools, numerous sites of CTCF and PARP-1 colocalization were demonstrated, suggesting that such regulation of CTCF may take place at the genome level.

摘要

聚(ADP-核糖)化的保守多功能转录因子 CTCF 以前被认为是重要的,以保持 CTCF 绝缘子和染色质屏障功能。然而,这种调节的分子机制以及这种修饰对于其他 CTCF 功能的必要性仍然未知。在这项研究中,我们确定了 CTCF 氨基末端结构域内聚(ADP-核糖)化的潜在位点,并生成了一个缺乏聚(ADP-核糖)化的突变体。使用这种 CTCF 突变体,我们证明了聚(ADP-核糖)化对于 CTCF 在 p19ARF 启动子的转录激活和抑制细胞增殖中的最佳功能是必需的。通过使用新生成的同源绝缘子报告细胞系,发现 CTCF 突变体在小鼠 Igf2-H19 印迹控制区(ICR)的绝缘子功能受损。通过单重和连续染色质免疫沉淀测定证实,PARP-1 和 CTCF 在 ICR 处的结合和同时存在与 CTCF 聚(ADP-核糖)化无关。这些结果提出了一种 CTCF 通过聚(ADP-核糖)化调节的模型,其中 CTCF 和 PARP-1 在 DNA 上的位点形成功能复合物,产生 CTCF 的动态可逆修饰。通过使用生物信息学工具,证明了 CTCF 和 PARP-1 的许多共定位位点,表明这种 CTCF 的调节可能发生在基因组水平上。

相似文献

2
Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation.
Nat Genet. 2004 Oct;36(10):1105-10. doi: 10.1038/ng1426. Epub 2004 Sep 7.
3
Decreased poly(ADP-ribosyl)ation of CTCF, a transcription factor, is associated with breast cancer phenotype and cell proliferation.
Clin Cancer Res. 2009 Sep 15;15(18):5762-71. doi: 10.1158/1078-0432.CCR-09-0329. Epub 2009 Sep 8.
4
Poly(ADP-ribosyl)ation and epigenetics. Is CTCF PARt of the plot?
Cell Cycle. 2005 Jan;4(1):96-101. doi: 10.4161/cc.4.1.1398. Epub 2005 Jan 19.
5
Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism.
J Cell Sci. 2006 May 1;119(Pt 9):1746-59. doi: 10.1242/jcs.02890. Epub 2006 Apr 4.
6
CCCTC-binding factor activates PARP-1 affecting DNA methylation machinery.
J Biol Chem. 2008 Aug 8;283(32):21873-80. doi: 10.1074/jbc.M801170200. Epub 2008 Jun 5.
7
Generation of poly(ADP-ribosyl)ation deficient mutants of the transcription factor, CTCF.
Methods Mol Biol. 2011;780:293-312. doi: 10.1007/978-1-61779-270-0_18.
8

引用本文的文献

2
PARP1 as an Epigenetic Modulator: Implications for the Regulation of Host-Viral Dynamics.
Pathogens. 2024 Jan 30;13(2):131. doi: 10.3390/pathogens13020131.
3
5
Uncommon posttranslational modifications in proteomics: ADP-ribosylation, tyrosine nitration, and tyrosine sulfation.
Mass Spectrom Rev. 2024 Mar-Apr;43(2):289-326. doi: 10.1002/mas.21811. Epub 2022 Sep 27.
6
CTCF and Its Partners: Shaper of 3D Genome during Development.
Genes (Basel). 2022 Aug 2;13(8):1383. doi: 10.3390/genes13081383.

本文引用的文献

1
Measurement of co-localization of objects in dual-colour confocal images.
J Microsc. 1993 Mar;169(3):375-382. doi: 10.1111/j.1365-2818.1993.tb03313.x.
2
Decreased poly(ADP-ribosyl)ation of CTCF, a transcription factor, is associated with breast cancer phenotype and cell proliferation.
Clin Cancer Res. 2009 Sep 15;15(18):5762-71. doi: 10.1158/1078-0432.CCR-09-0329. Epub 2009 Sep 8.
3
CTCF: master weaver of the genome.
Cell. 2009 Jun 26;137(7):1194-211. doi: 10.1016/j.cell.2009.06.001.
5
Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites.
Nucleic Acids Res. 2009 Jun;37(11):3723-38. doi: 10.1093/nar/gkp229. Epub 2009 Apr 16.
6
CCCTC-binding factor meets poly(ADP-ribose) polymerase-1.
J Cell Physiol. 2009 May;219(2):265-70. doi: 10.1002/jcp.21691.
7
Human gamma-satellite DNA maintains open chromatin structure and protects a transgene from epigenetic silencing.
Genome Res. 2009 Apr;19(4):533-44. doi: 10.1101/gr.086496.108. Epub 2009 Jan 13.
9
The CTCF insulator protein is posttranslationally modified by SUMO.
Mol Cell Biol. 2009 Feb;29(3):714-25. doi: 10.1128/MCB.00825-08. Epub 2008 Nov 24.
10
Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation.
Mol Cell. 2008 Oct 10;32(1):57-69. doi: 10.1016/j.molcel.2008.08.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验