Physiological Genomics Group, Department of Animal Science, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA.
J Exp Biol. 2010 Jan 15;213(2):210-24. doi: 10.1242/jeb.031781.
Partially euryhaline elasmobranchs may tolerate physiologically challenging, variable salinity conditions in estuaries as a trade-off to reduce predation risk or to gain access to abundant food resources. To further understand these trade-offs and to evaluate the underlying mechanisms, we examined the responses of juvenile leopard sharks to salinity changes using a suite of measurements at multiple organizational levels: gill and rectal gland proteomes (using 2-D gel electrophoresis and tandem mass spectrometry), tissue biochemistry (Na(+)/K(+)-ATPase, caspase 3/7 and chymotrypsin-like proteasome activities), organismal physiology (hematology, plasma composition, muscle moisture) and individual behavior. Our proteomics results reveal coordinated molecular responses to low salinity - several of which are common to both rectal gland and gill - including changes in amino acid and inositol (i.e. osmolyte) metabolism, energy metabolism and proteins related to transcription, translation and protein degradation. Overall, leopard sharks employ a strategy of maintaining plasma urea, ion concentrations and Na(+)/K(+)-ATPase activities in the short-term, possibly because they rarely spend extended periods in low salinity conditions in the wild, but the sharks osmoconform to the surrounding conditions by 3 weeks. We found no evidence of apoptosis at the time points tested, while both tissues exhibited proteomic changes related to the cytoskeleton, suggesting that leopard sharks remodel existing osmoregulatory epithelial cells and activate physiological acclimatory responses to solve the problems posed by low salinity exposure. The behavioral measurements reveal increased activity in the lowest salinity in the short-term, while activity decreased in the lowest salinity in the long-term. Our data suggest that physiological/behavioral trade-offs are involved in using estuarine habitats, and pathway modeling implicates tumor necrosis factor alpha (TNFalpha) as a key node of the elasmobranch hyposmotic response network.
部分广盐性的鲨鱼可能会在河口地区忍受具有挑战性的、变化的盐度条件,以换取降低捕食风险或获得丰富食物资源的好处。为了进一步了解这些权衡,并评估潜在的机制,我们使用一系列测量方法在多个组织层次上研究了幼年豹鲨对盐度变化的反应:鳃和直肠腺蛋白质组(使用二维凝胶电泳和串联质谱)、组织生物化学(Na(+)/K(+)-ATPase、caspase 3/7 和糜蛋白酶样蛋白酶体活性)、机体生理学(血液学、血浆成分、肌肉水分)和个体行为。我们的蛋白质组学结果揭示了对低盐度的协调分子反应——其中一些反应在直肠腺和鳃中都很常见——包括氨基酸和肌醇(即渗透调节剂)代谢、能量代谢以及与转录、翻译和蛋白质降解相关的蛋白质的变化。总的来说,豹鲨在短期内采用维持血浆尿素、离子浓度和 Na(+)/K(+)-ATPase 活性的策略,这可能是因为它们在野外很少长时间处于低盐度环境中,但鲨鱼通过 3 周的时间来适应周围的条件。在测试的时间点,我们没有发现凋亡的证据,而两个组织都表现出与细胞骨架相关的蛋白质组变化,这表明豹鲨重塑现有的渗透压调节上皮细胞,并激活生理适应反应来解决低盐度暴露带来的问题。行为测量显示,在短期的最低盐度下,活动增加,而在长期的最低盐度下,活动减少。我们的数据表明,生理/行为权衡参与了利用河口栖息地,而通路建模表明肿瘤坏死因子 alpha (TNFalpha) 是鲨鱼低渗反应网络的关键节点。