School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.
Comput Biol Chem. 2010 Feb;34(1):63-70. doi: 10.1016/j.compbiolchem.2009.11.001. Epub 2009 Dec 29.
Serial analysis of gene expression (SAGE) is a powerful tool to obtain gene expression profiles. Clustering analysis is a valuable technique for analyzing SAGE data. In this paper, we propose an adaptive clustering method for SAGE data analysis, namely, PoissonAPS. The method incorporates a novel clustering algorithm, Affinity Propagation (AP). While AP algorithm has demonstrated good performance on many different data sets, it also faces several limitations. PoissonAPS overcomes the limitations of AP using the clustering validation measure as a cost function of merging and splitting, and as a result, it can automatically cluster SAGE data without user-specified parameters. We evaluated PoissonAPS and compared its performance with other methods on several real life SAGE datasets. The experimental results show that PoissonAPS can produce meaningful and interpretable clusters for SAGE data.
基因表达系列分析(SAGE)是获取基因表达谱的强大工具。聚类分析是分析 SAGE 数据的一种有价值的技术。在本文中,我们提出了一种用于 SAGE 数据分析的自适应聚类方法,即 PoissonAPS。该方法结合了一种新颖的聚类算法,即亲和传播(AP)。虽然 AP 算法在许多不同的数据集上表现良好,但它也面临着几个局限性。PoissonAPS 通过使用聚类验证度量作为合并和分裂的成本函数来克服 AP 的局限性,因此它可以自动对 SAGE 数据进行聚类,而无需用户指定参数。我们评估了 PoissonAPS,并将其性能与其他方法在几个真实的 SAGE 数据集上进行了比较。实验结果表明,PoissonAPS 可以为 SAGE 数据生成有意义和可解释的聚类。