Suppr超能文献

配体和受体之间的共价键对于视紫红质的有效激活是必需的。

Covalent bond between ligand and receptor required for efficient activation in rhodopsin.

机构信息

Department of Biophysics, Graduate School of Science and CREST-JST, Kyoto University, Kyoto 606-8502, Japan.

出版信息

J Biol Chem. 2010 Mar 12;285(11):8114-21. doi: 10.1074/jbc.M109.063875. Epub 2009 Dec 30.

Abstract

Rhodopsin is an extensively studied member of the G protein-coupled receptors (GPCRs). Although rhodopsin shares many features with the other GPCRs, it exhibits unique features as a photoreceptor molecule. A hallmark in the molecular structure of rhodopsin is the covalently bound chromophore that regulates the activity of the receptor acting as an agonist or inverse agonist. Here we show the pivotal role of the covalent bond between the retinal chromophore and the lysine residue at position 296 in the activation pathway of bovine rhodopsin, by use of a rhodopsin mutant K296G reconstituted with retinylidene Schiff bases. Our results show that photoreceptive functions of rhodopsin, such as regiospecific photoisomerization of the ligand, and its quantum yield were not affected by the absence of the covalent bond, whereas the activation mechanism triggered by photoisomerization of the retinal was severely affected. Furthermore, our results show that an active state similar to the Meta-II intermediate of wild-type rhodopsin did not form in the bleaching process of this mutant, although it exhibited relatively weak G protein activity after light irradiation because of an increased basal activity of the receptor. We propose that the covalent bond is required for transmitting structural changes from the photoisomerized agonist to the receptor and that the covalent bond forcibly keeps the low affinity agonist in the receptor, resulting in a more efficient G protein activation.

摘要

视紫红质是 G 蛋白偶联受体 (GPCR) 中研究得非常充分的一个成员。虽然视紫红质与其他 GPCR 有许多共同特征,但它作为光受体分子表现出独特的特征。视紫红质的分子结构的一个特点是共价结合的生色团,它作为激动剂或反向激动剂调节受体的活性。在这里,我们通过使用与视黄醛席夫碱重新构成的 K296G 视紫红质突变体,展示了视紫红质中视黄醛发色团和位置 296 赖氨酸残基之间的共价键在牛视紫红质激活途径中的关键作用。我们的结果表明,视紫红质的光感受功能,如配体的区域特异性光异构化及其量子产率不受共价键缺失的影响,而光异构化引发的激活机制则受到严重影响。此外,我们的结果表明,尽管该突变体在漂白过程中没有形成类似于野生型视紫红质 Meta-II 中间体的活性状态,但由于受体的基础活性增加,它在光照射后表现出相对较弱的 G 蛋白活性。我们提出,共价键对于将光异构化的激动剂的结构变化传递到受体是必需的,并且共价键强制将低亲和力的激动剂保留在受体中,从而更有效地激活 G 蛋白。

相似文献

1
Covalent bond between ligand and receptor required for efficient activation in rhodopsin.
J Biol Chem. 2010 Mar 12;285(11):8114-21. doi: 10.1074/jbc.M109.063875. Epub 2009 Dec 30.
3
Transducin activation by rhodopsin without a covalent bond to the 11-cis-retinal chromophore.
Science. 1991 Feb 1;251(4993):558-60. doi: 10.1126/science.1990431.
4
Crystal structure of rhodopsin: implications for vision and beyond.
Curr Opin Struct Biol. 2001 Aug;11(4):420-6. doi: 10.1016/s0959-440x(00)00227-x.
5
Partial agonist activity of 11-cis-retinal in rhodopsin mutants.
J Biol Chem. 1997 Sep 12;272(37):23081-5. doi: 10.1074/jbc.272.37.23081.
7
Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
J Mol Biol. 2008 Oct 3;382(2):539-55. doi: 10.1016/j.jmb.2008.06.084. Epub 2008 Jul 7.
9
A pivot between helices V and VI near the retinal-binding site is necessary for activation in rhodopsins.
J Biol Chem. 2010 Mar 5;285(10):7351-7. doi: 10.1074/jbc.M109.078709. Epub 2010 Jan 6.

引用本文的文献

1
Evolutionary adaptation of visual pigments in geckos for their photic environment.
Sci Adv. 2021 Oct;7(40):eabj1316. doi: 10.1126/sciadv.abj1316. Epub 2021 Oct 1.
2
Evolutionary history of teleost intron-containing and intron-less rhodopsin genes.
Sci Rep. 2019 Jul 23;9(1):10653. doi: 10.1038/s41598-019-47028-4.
4
Adaptation of cone pigments found in green rods for scotopic vision through a single amino acid mutation.
Proc Natl Acad Sci U S A. 2017 May 23;114(21):5437-5442. doi: 10.1073/pnas.1620010114. Epub 2017 May 8.
5
Origin of the low thermal isomerization rate of rhodopsin chromophore.
Sci Rep. 2015 Jun 10;5:11081. doi: 10.1038/srep11081.
6
Differential light-induced responses in sectorial inherited retinal degeneration.
J Biol Chem. 2014 Dec 26;289(52):35918-28. doi: 10.1074/jbc.M114.609958. Epub 2014 Oct 30.
7
Effect of channel mutations on the uptake and release of the retinal ligand in opsin.
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5247-52. doi: 10.1073/pnas.1117268109. Epub 2012 Mar 19.
8
Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II.
Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):119-24. doi: 10.1073/pnas.1114089108. Epub 2011 Dec 23.
9
Molecular mechanisms of disease for mutations at Gly-90 in rhodopsin.
J Biol Chem. 2011 Nov 18;286(46):39993-40001. doi: 10.1074/jbc.M110.201517. Epub 2011 Sep 22.

本文引用的文献

1
Evolution of opsins and phototransduction.
Philos Trans R Soc Lond B Biol Sci. 2009 Oct 12;364(1531):2881-95. doi: 10.1098/rstb.2009.0051.
2
3
High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation.
Proc Natl Acad Sci U S A. 2008 May 27;105(21):7439-44. doi: 10.1073/pnas.0802515105. Epub 2008 May 19.
5
Crystallographic analysis of primary visual photochemistry.
Angew Chem Int Ed Engl. 2006 Jun 26;45(26):4270-3. doi: 10.1002/anie.200600595.
7
A rhodopsin exhibiting binding ability to agonist all-trans-retinal.
Proc Natl Acad Sci U S A. 2005 May 3;102(18):6303-8. doi: 10.1073/pnas.0500378102. Epub 2005 Apr 25.
8
Structural origins of constitutive activation in rhodopsin: Role of the K296/E113 salt bridge.
Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12508-13. doi: 10.1073/pnas.0404519101. Epub 2004 Aug 11.
9
Bistable UV pigment in the lamprey pineal.
Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6687-91. doi: 10.1073/pnas.0400819101. Epub 2004 Apr 19.
10
Counterion displacement in the molecular evolution of the rhodopsin family.
Nat Struct Mol Biol. 2004 Mar;11(3):284-9. doi: 10.1038/nsmb731. Epub 2004 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验