Altenbach Christian, Kusnetzow Ana Karin, Ernst Oliver P, Hofmann Klaus Peter, Hubbell Wayne L
Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
Proc Natl Acad Sci U S A. 2008 May 27;105(21):7439-44. doi: 10.1073/pnas.0802515105. Epub 2008 May 19.
Site-directed spin labeling has qualitatively shown that a key event during activation of rhodopsin is a rigid-body movement of transmembrane helix 6 (TM6) at the cytoplasmic surface of the molecule. To place this result on a quantitative footing, and to identify movements of other helices upon photoactivation, double electron-electron resonance (DEER) spectroscopy was used to determine distances and distance changes between pairs of nitroxide side chains introduced in helices at the cytoplasmic surface of rhodopsin. Sixteen pairs were selected from a set of nine individual sites, each located on the solvent exposed surface of the protein where structural perturbation due to the presence of the label is minimized. Importantly, the EPR spectra of the labeled proteins change little or not at all upon photoactivation, suggesting that rigid-body motions of helices rather than rearrangement of the nitroxide side chains are responsible for observed distance changes. For inactive rhodopsin, it was possible to find a globally minimized arrangement of nitroxide locations that simultaneously satisfied the crystal structure of rhodopsin (Protein Data Bank entry 1GZM), the experimentally measured distance data, and the known rotamers of the nitroxide side chain. A similar analysis of the data for activated rhodopsin yielded a new geometry consistent with a 5-A outward movement of TM6 and smaller movements involving TM1, TM7, and the C-terminal sequence following helix H8. The positions of nitroxides in other helices at the cytoplasmic surface remained largely unchanged.
定点自旋标记已定性表明,视紫红质激活过程中的一个关键事件是跨膜螺旋6(TM6)在分子胞质表面的刚体运动。为了将这一结果建立在定量基础上,并确定光激活后其他螺旋的运动,采用双电子-电子共振(DEER)光谱来测定视紫红质胞质表面螺旋中引入的成对氮氧化物侧链之间的距离和距离变化。从九个单独位点的一组中选择了16对,每个位点都位于蛋白质的溶剂暴露表面,由于标记的存在而导致的结构扰动最小。重要的是,标记蛋白的EPR光谱在光激活后变化很小或根本没有变化,这表明螺旋的刚体运动而非氮氧化物侧链的重排是观察到的距离变化的原因。对于无活性的视紫红质,可以找到一个全局最小化的氮氧化物位置排列,该排列同时满足视紫红质的晶体结构(蛋白质数据库条目1GZM)、实验测量的距离数据以及氮氧化物侧链的已知旋转异构体。对激活的视紫红质的数据进行类似分析,得到了一种新的几何结构,与TM6向外移动5埃以及涉及TM1、TM7和螺旋H8之后的C末端序列的较小移动一致。胞质表面其他螺旋中氮氧化物的位置基本保持不变。