Suppr超能文献

对易碎物体的操作。

Manipulation of a fragile object.

机构信息

Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA.

出版信息

Exp Brain Res. 2010 Apr;202(2):413-30. doi: 10.1007/s00221-009-2148-z. Epub 2009 Dec 31.

Abstract

We investigated strategies of adjustments in kinetic and kinematic patterns, and in multi-digit synergies during quick vertical transport of an instrumented handle that collapsed when the grasping force exceeded a certain magnitude (quantified with a fragility index). The collapse threshold of the object was set using a novel electromagnetic device. Moving a fragile object is viewed as a task with two constraints on the grip force defined by the slipping and crushing thresholds. When moving more fragile objects, subjects decreased object peak acceleration, increased movement time, showed a drop in the safety margin (SM) (extra force over the slipping threshold), and showed a tendency toward violating the minimum-jerk criterion. Linear regression analysis of grip force against load force has shown tight coupling between the two with a decline in the coefficient of determination with increased fragility index. The SM was lower in bimanual tasks, compared to unimanual tasks, for both fragile and non-fragile objects. Two novel indices have been introduced and studied, the SM due to fragility and the drop-crush index. Both indices showed a decrease with increased object fragility. Changes in the drop-crush index showed that the subjects would rather crush the fragile objects as opposed to dropping them, possibly reflecting the particular experimental procedure. We did not find differences between the performance indices of the dominant and non-dominant hand thus failing to support the recently formulated dominance hypothesis. The synergies stabilizing grip force were quantified at two levels of an assumed two-level control hierarchy using co-variation indices between elemental variables across trials. There were strong synergies at the upper level of the hierarchy (the task is shared between the opposing groups of digits) that weakened with an increase in object fragility. At the lower level (action of an effector is shared among the four fingers), higher fragility led to higher synergy indices. Analysis of force variance showed that an increase in object fragility was accompanied by exploring a smaller range of equivalent combinations of elemental variables. The additional constraint imposed by high fragility facilitated synergies at the lower level of the hierarchy, while there was evidence for a trade-off between synergies at the two levels.

摘要

我们研究了在仪器手柄快速垂直传输过程中,动力学和运动学模式以及多位数协同作用的调整策略,当握持力超过一定大小(用脆性指数量化)时,手柄会崩溃。使用新型电磁装置设置物体的崩溃阈值。移动易碎物体被视为具有两个约束的任务,即由滑动和粉碎阈值定义的握力。当移动更易碎的物体时,受试者会降低物体的峰值加速度,增加运动时间,安全裕度(SM)(超过滑动阈值的额外力)下降,并倾向于违反最小冲击准则。握力与负载力的线性回归分析表明,两者之间紧密耦合,随着脆性指数的增加,确定系数下降。与单手持物任务相比,双手持物任务的 SM 较低,无论是易碎物体还是非易碎物体。引入并研究了两个新指数,脆性引起的 SM 和跌落粉碎指数。随着物体脆性的增加,两个指数都呈下降趋势。跌落粉碎指数的变化表明,受试者宁愿粉碎易碎物体而不是将其掉落,这可能反映了特定的实验程序。我们没有在手的优势和非优势手的性能指标之间发现差异,因此未能支持最近提出的优势假说。使用协变量指数在假设的两级控制层次结构的两个级别上量化稳定握力的协同作用,该指数表示跨试验的基本变量之间的协变。在层次结构的上层(任务由对立的数字组共享)存在很强的协同作用,随着物体脆性的增加而减弱。在较低的层次(四个手指之间的作用力共享)上,较高的脆性导致更高的协同指数。力方差分析表明,物体脆性的增加伴随着探索更小范围的基本变量等效组合。高脆性施加的额外约束促进了层次结构较低水平的协同作用,而两个层次之间存在协同作用的权衡。

相似文献

1
Manipulation of a fragile object.
Exp Brain Res. 2010 Apr;202(2):413-30. doi: 10.1007/s00221-009-2148-z. Epub 2009 Dec 31.
2
Multi-digit coordination during lifting a horizontally oriented object: synergies control with referent configurations.
Exp Brain Res. 2012 Oct;222(3):277-90. doi: 10.1007/s00221-012-3215-4. Epub 2012 Aug 22.
3
Prehension of half-full and half-empty glasses: time and history effects on multi-digit coordination.
Exp Brain Res. 2011 Apr;209(4):571-85. doi: 10.1007/s00221-011-2590-6. Epub 2011 Feb 18.
4
Manipulation of a fragile object by elderly individuals.
Exp Brain Res. 2011 Aug;212(4):505-16. doi: 10.1007/s00221-011-2755-3. Epub 2011 Jun 12.
5
Prehension synergies during smooth changes of the external torque.
Exp Brain Res. 2011 Sep;213(4):493-506. doi: 10.1007/s00221-011-2799-4. Epub 2011 Jul 28.
6
Static prehension of a horizontally oriented object in three dimensions.
Exp Brain Res. 2012 Jan;216(2):249-61. doi: 10.1007/s00221-011-2923-5. Epub 2011 Nov 10.
7
Prehension synergies and control with referent hand configurations.
Exp Brain Res. 2010 Apr;202(1):213-29. doi: 10.1007/s00221-009-2128-3. Epub 2009 Dec 23.
8
Handy divisions: Hand-specific specialization of prehensile control in bimanual tasks.
PLoS One. 2025 Apr 16;20(4):e0321739. doi: 10.1371/journal.pone.0321739. eCollection 2025.
9
Adjustments of prehension synergies in response to self-triggered and experimenter-triggered load and torque perturbations.
Exp Brain Res. 2006 Nov;175(4):641-53. doi: 10.1007/s00221-006-0583-7. Epub 2006 Jun 28.
10
Prehension synergies and hand function in early-stage Parkinson's disease.
Exp Brain Res. 2015 Feb;233(2):425-40. doi: 10.1007/s00221-014-4130-7. Epub 2014 Nov 5.

引用本文的文献

1
Deformable and Fragile Object Manipulation: A Review and Prospects.
Sensors (Basel). 2025 Sep 2;25(17):5430. doi: 10.3390/s25175430.
5
Haptic shared control improves neural efficiency during myoelectric prosthesis use.
Sci Rep. 2023 Jan 10;13(1):484. doi: 10.1038/s41598-022-26673-2.
6
Influence of Load Knowledge on Biomechanics of Asymmetric Lifting.
Int J Environ Res Public Health. 2022 Mar 9;19(6):3207. doi: 10.3390/ijerph19063207.
7
Dynamic bimanual force control in chronic stroke: contribution of non-paretic and paretic hands.
Exp Brain Res. 2019 Aug;237(8):2123-2133. doi: 10.1007/s00221-019-05580-5. Epub 2019 Jun 13.
8
9
Simultaneous assessment of hand function and neuromuscular quickness through a static object manipulation task in healthy adults.
Exp Brain Res. 2017 Jan;235(1):321-329. doi: 10.1007/s00221-016-4797-z. Epub 2016 Oct 7.
10
Grip forces during fast point-to-point and continuous hand movements.
Exp Brain Res. 2015 Nov;233(11):3201-20. doi: 10.1007/s00221-015-4388-4. Epub 2015 Jul 31.

本文引用的文献

1
Hierarchies of Synergies in Human Movements.
Kinesiology (Zagreb). 2008 Jun 1;40(1):29-38.
2
Mechanical analysis and hierarchies of multidigit synergies during accurate object rotation.
Motor Control. 2009 Jul;13(3):251-79. doi: 10.1123/mcj.13.3.251.
3
The sources of two components of variance: an example of multifinger cyclic force production tasks at different frequencies.
Exp Brain Res. 2009 Jun;196(2):263-77. doi: 10.1007/s00221-009-1846-x. Epub 2009 May 26.
4
Joint coordination during bimanual transport of real and imaginary objects.
Neurosci Lett. 2009 Jun 5;456(2):80-4. doi: 10.1016/j.neulet.2009.03.084. Epub 2009 Mar 31.
5
Coding and use of tactile signals from the fingertips in object manipulation tasks.
Nat Rev Neurosci. 2009 May;10(5):345-59. doi: 10.1038/nrn2621. Epub 2009 Apr 8.
6
Effects of object compliance on three-digit grasping.
J Neurophysiol. 2009 May;101(5):2447-58. doi: 10.1152/jn.91021.2008. Epub 2009 Mar 11.
7
Multi-finger prehension: control of a redundant mechanical system.
Adv Exp Med Biol. 2009;629:597-618. doi: 10.1007/978-0-387-77064-2_32.
8
Hierarchical control of static prehension: I. Biomechanics.
Exp Brain Res. 2009 Mar;193(4):615-31. doi: 10.1007/s00221-008-1662-8. Epub 2008 Dec 6.
9
Hierarchical control of static prehension: II. Multi-digit synergies.
Exp Brain Res. 2009 Mar;194(1):1-15. doi: 10.1007/s00221-008-1663-7. Epub 2008 Dec 2.
10
Dynamic torque during a precision grip task comparable to picking a raspberry.
J Neurosci Methods. 2009 Feb 15;177(1):80-6. doi: 10.1016/j.jneumeth.2008.09.031. Epub 2008 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验