Department of Chemistry, and Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA.
J Phys Chem A. 2010 Feb 4;114(4):1749-55. doi: 10.1021/jp909633a.
Low-temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165, and 295 K is found to be relatively constant over this temperature range, (3.9-4.9) x 10(-10) cm(3) molecule(-1) s(-1). These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a rate coefficient of 1.3 x 10(-10) cm(3) molecule(-1) s(-1) at 105 K. At room temperature, nonexponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C(6)H(5)CN) is the only product recorded with no detectable evidence for a C(6)H(5) + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC(6)H(4)CH(3)) constitutes the only detected product. It is not possible to differentiate among the ortho, meta, and para isomers of cyanotoluene because of their similar ionization energies and the approximately 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C(6)H(5)CH(2)) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn's moon Titan ( approximately 100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).
使用脉冲拉瓦尔喷嘴膨胀技术结合激光诱导荧光检测,测量了 CN + 苯和 CN + 甲苯反应的低温速率系数。在 105、165 和 295 K 下,CN + 苯反应的速率系数在该温度范围内相对恒定,为(3.9-4.9)x 10(-10) cm(3) molecule(-1) s(-1)。这些快速动力学以及观察到的可忽略的温度依赖性与无势垒反应入口通道和接近 1 的反应效率一致。测量到 CN + 甲苯反应在 105 K 时的速率系数为 1.3 x 10(-10) cm(3) molecule(-1) s(-1)。在室温下,观察到该反应的非指数衰减曲线,这可能表明中间复合物的显著反向离解。在单独的实验中,使用同步辐射 VUV 光电子电离质谱在室温下探测这些反应的产物。对于 CN + 苯,仅记录到氰基苯(C(6)H(5)CN)作为产物,没有检测到 C(6)H(5) + HCN 产物通道的证据。对于 CN + 甲苯,氰基甲苯(NCC(6)H(4)CH(3))是唯一检测到的产物。由于它们的电离能相似且实验的光子能量分辨率约为 40 meV,因此无法区分氰基甲苯的邻、间、对位异构体。在这些条件下,没有显著检测到苄基自由基(C(6)H(5)CH(2)),这表明 H 提取或 HCN 消除通道很突出。由于这两个反应在 105 K 下都被测量为快速反应,似乎具有无势垒入口通道,因此可以推断它们在土星卫星泰坦(约 100 K)的温度下也会有效地进行,并且在星际云(10-20 K)的温度下也可能进行。