利用寡核苷酸阵列提高基因组基因座捕获效率,实现高通量重测序。
Improving the efficiency of genomic loci capture using oligonucleotide arrays for high throughput resequencing.
机构信息
Department of Human Genetics, University of California, Los Angeles, California, USA.
出版信息
BMC Genomics. 2009 Dec 31;10:646. doi: 10.1186/1471-2164-10-646.
BACKGROUND
The emergence of next-generation sequencing technology presents tremendous opportunities to accelerate the discovery of rare variants or mutations that underlie human genetic disorders. Although the complete sequencing of the affected individuals' genomes would be the most powerful approach to finding such variants, the cost of such efforts make it impractical for routine use in disease gene research. In cases where candidate genes or loci can be defined by linkage, association, or phenotypic studies, the practical sequencing target can be made much smaller than the whole genome, and it becomes critical to have capture methods that can be used to purify the desired portion of the genome for shotgun short-read sequencing without biasing allelic representation or coverage. One major approach is array-based capture which relies on the ability to create a custom in-situ synthesized oligonucleotide microarray for use as a collection of hybridization capture probes. This approach is being used by our group and others routinely and we are continuing to improve its performance.
RESULTS
Here, we provide a complete protocol optimized for large aggregate sequence intervals and demonstrate its utility with the capture of all predicted amino acid coding sequence from 3,038 human genes using 241,700 60-mer oligonucleotides. Further, we demonstrate two techniques by which the efficiency of the capture can be increased: by introducing a step to block cross hybridization mediated by common adapter sequences used in sequencing library construction, and by repeating the hybridization capture step. These improvements can boost the targeting efficiency to the point where over 85% of the mapped sequence reads fall within 100 bases of the targeted regions.
CONCLUSIONS
The complete protocol introduced in this paper enables researchers to perform practical capture experiments, and includes two novel methods for increasing the targeting efficiency. Coupled with the new massively parallel sequencing technologies, this provides a powerful approach to identifying disease-causing genetic variants that can be localized within the genome by traditional methods.
背景
下一代测序技术的出现为加速发现导致人类遗传疾病的罕见变异或突变提供了巨大的机会。尽管对受影响个体的基因组进行全序列测序将是发现此类变异的最有力方法,但这种方法的成本使得其在疾病基因研究中常规使用不切实际。在可以通过连锁、关联或表型研究来定义候选基因或基因座的情况下,可以将实际的测序目标缩小到比全基因组小得多的范围,并且必须使用捕获方法来纯化基因组的所需部分进行鸟枪法短读测序,而不会偏向等位基因的代表性或覆盖度。一种主要方法是基于阵列的捕获,它依赖于创建原位合成寡核苷酸微阵列的能力,用作杂交捕获探针的集合。我们小组和其他小组正在常规使用这种方法,并且我们正在继续改进其性能。
结果
在这里,我们提供了一个针对大聚合序列间隔进行了优化的完整方案,并通过使用 241,700 个 60 碱基的寡核苷酸来捕获 3038 个人类基因的所有预测氨基酸编码序列,证明了其实用性。此外,我们还展示了两种可以提高捕获效率的技术:通过引入阻止在测序文库构建中使用的常见接头序列介导的交叉杂交的步骤,以及通过重复杂交捕获步骤。这些改进可以将靶向效率提高到 85%以上的映射序列读数落在目标区域 100 个碱基以内的程度。
结论
本文介绍的完整方案使研究人员能够进行实际的捕获实验,并包括两种提高靶向效率的新方法。与新型大规模并行测序技术相结合,为通过传统方法在基因组中定位致病遗传变异提供了一种强大的方法。
相似文献
Nat Genet. 2007-12
引用本文的文献
Nucleic Acids Res. 2023-7-21
Ann N Y Acad Sci. 2016-2
Nat Genet. 2012-5-27
本文引用的文献
Nat Genet. 2009-11-13
Proc Natl Acad Sci U S A. 2009-10-27
Nat Biotechnol. 2009-9
Nat Genet. 2009-9
Science. 2009-1-2
Curr Protoc Hum Genet. 2008-4
Science. 2008-4-4
Nat Genet. 2007-12