Department of Molecular Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
J Mol Biol. 2010 Mar 12;396(5):1319-28. doi: 10.1016/j.jmb.2009.12.040. Epub 2010 Jan 4.
Apomyoglobin folds by a sequential mechanism in which the A, G, and H helix regions undergo rapid collapse to form a compact intermediate onto which the central portion of the B helix subsequently docks. To investigate the factors that frustrate folding, we have made mutations in the N-terminus of the B helix to stabilize helical structure (in the mutant G23A/G25A) and to promote native-like hydrophobic packing interactions with helix G (in the mutant H24L/H119F). The kinetic and equilibrium intermediates of G23A/G25A and H24L/H119F were studied by hydrogen exchange pulse labeling and interrupted hydrogen/deuterium exchange combined with NMR. For both mutants, stabilization of helical structure in the N-terminal region of the B helix is confirmed by increased exchange protection in the equilibrium molten globule states near pH 4. Increased protection is also observed in the GH turn region in the G23A/G25A mutant, suggesting that stabilization of the B helix facilitates native-like interactions with the C-terminal region of helix G. These interactions are further enhanced in H24L/H119F. The kinetic burst phase intermediates of both mutants show increased protection, relative to wild-type protein, of amides in the N-terminus of the B helix and in part of the E helix. Stabilization of the E helix in the intermediate is attributed to direct interactions between E helix residues and the newly stabilized N-terminus of helix B. Stabilization of native packing between the B and G helices in H24L/H119F also favors formation of native-like interactions in the GH turn and between the G and H helices in the ensemble of burst phase intermediates. We conclude that instability at the N-terminus of the B helix of apomyoglobin contributes to the energetic frustration of folding by preventing docking and stabilization of the E helix.
肌红蛋白通过顺序折叠机制折叠,其中 A、G 和 H 螺旋区迅速坍塌,形成一个紧凑的中间产物,随后 B 螺旋的中心部分与之对接。为了研究阻碍折叠的因素,我们在 B 螺旋的 N 端突变以稳定螺旋结构(在突变体 G23A/G25A 中)并促进与螺旋 G 的类似天然的疏水性堆积相互作用(在突变体 H24L/H119F 中)。通过氢交换脉冲标记和中断的氢/氘交换结合 NMR 研究了 G23A/G25A 和 H24L/H119F 的动力学和平衡中间体。对于这两种突变体,B 螺旋 N 端区域螺旋结构的稳定性通过在接近 pH4 的平衡无规卷曲状态下增加交换保护来证实。在 G23A/G25A 突变体中,GH 转角区域也观察到增加的保护,表明 B 螺旋的稳定性促进了与螺旋 G 末端区域的类似天然的相互作用。这些相互作用在 H24L/H119F 中进一步增强。与野生型蛋白相比,两种突变体的动力学爆发相中间体显示出酰胺在 B 螺旋的 N 端和部分 E 螺旋中的保护增加。中间产物中 E 螺旋的稳定性归因于 E 螺旋残基与新稳定的 B 螺旋 N 端之间的直接相互作用。在 H24L/H119F 中,B 和 G 螺旋之间天然堆积的稳定性也有利于在爆发相中间体的集合中形成类似天然的 GH 转角和 G 和 H 螺旋之间的相互作用。我们得出结论,肌红蛋白 apo 分子中 B 螺旋 N 端的不稳定性通过阻止 E 螺旋的对接和稳定来贡献于折叠的能量挫折。