Department of Orthopaedic Surgery, MS 1008, University of Toledo Medical Center, 3000 Arlington Ave., Toledo, OH 43614, USA.
Bone. 2010 Apr;46(4):1138-45. doi: 10.1016/j.bone.2009.12.020. Epub 2010 Jan 4.
Type 2 diabetes is associated with normal-to-higher bone mineral density (BMD) and increased rate of fracture. Hyperinsulinemia and hyperglycemia may affect bone mass and quality in the diabetic skeleton. In order to dissect the effect of hyperinsulinemia from the hyperglycemic impact on bone homeostasis, we have analyzed L-SACC1 mice, a murine model of impaired insulin clearance in liver causing hyperinsulinemia and insulin resistance without fasting hyperglycemia. Adult L-SACC1 mice exhibit significantly higher trabecular and cortical bone mass, attenuated bone formation as measured by dynamic histomorphometry, and reduced number of osteoclasts. Serum levels of bone formation (BALP) and bone resorption markers (TRAP5b and CTX) are decreased by approximately 50%. The L-SACC1 mutation in the liver affects myeloid cell lineage allocation in the bone marrow: the (CD3(-)CD11b(-)CD45R(-)) population of osteoclast progenitors is decreased by 40% and the number of (CD3(-)CD11b(-)CD45R(+)) B-cell progenitors is increased by 60%. L-SACC1 osteoclasts express lower levels of c-fos and RANK and their differentiation is impaired. In vitro analysis corroborated a negative effect of insulin on osteoclast recruitment, maturation and the expression levels of c-fos and RANK transcripts. Although bone formation is decreased in L-SACC1 mice, the differentiation potential and expression of the osteoblast-specific gene markers in L-SACC1-derived mesenchymal stem cells (MSC) remain unchanged as compared to the WT. Interestingly, however, MSC from L-SACC1 mice exhibit increased PPARgamma2 and decreased IGF-1 transcript levels. These data suggest that high bone mass in L-SACC1 animals results, at least in part, from a negative regulatory effect of insulin on bone resorption and formation, which leads to decreased bone turnover. Because low bone turnover contributes to decreased bone quality and an increased incidence of fractures, studies on L-SACC1 mice may advance our understanding of altered bone homeostasis in type 2 diabetes.
2 型糖尿病与正常至更高的骨矿物质密度(BMD)和骨折发生率增加有关。高胰岛素血症和高血糖可能会影响糖尿病骨骼中的骨量和质量。为了从高血糖对骨稳态的影响中分离出海洛因对骨稳态的影响,我们分析了 L-SACC1 小鼠,这是一种肝脏胰岛素清除受损导致高胰岛素血症和胰岛素抵抗而无空腹高血糖的小鼠模型。成年 L-SACC1 小鼠表现出明显更高的小梁和皮质骨量,动态组织形态计量学测量的骨形成减弱,破骨细胞数量减少。血清骨形成(BALP)和骨吸收标志物(TRAP5b 和 CTX)水平降低约 50%。肝脏中的 L-SACC1 突变影响骨髓中的髓样细胞谱系分配:(CD3(-)CD11b(-)CD45R(-))破骨细胞前体细胞减少 40%,(CD3(-)CD11b(-)CD45R(+))B 细胞前体增加 60%。L-SACC1 破骨细胞表达较低水平的 c-fos 和 RANK,其分化受损。体外分析证实胰岛素对破骨细胞募集、成熟和 c-fos 和 RANK 转录物表达水平有负面影响。尽管 L-SACC1 小鼠的骨形成减少,但与 WT 相比,L-SACC1 衍生间充质干细胞(MSC)的成骨细胞特异性基因标志物的分化潜能和表达保持不变。然而,有趣的是,L-SACC1 小鼠的 MSC 表现出较高的 PPARgamma2 和较低的 IGF-1 转录水平。这些数据表明,L-SACC1 动物的高骨量至少部分是由于胰岛素对骨吸收和形成的负调节作用导致骨转换减少所致。由于低骨转换会导致骨质量下降和骨折发生率增加,因此对 L-SACC1 小鼠的研究可能会增进我们对 2 型糖尿病中改变的骨稳态的理解。