Laboratoire de Psychologie et NeuroCognition, CNRS-UMR 5105, Université Pierre Mendès-France, Grenoble, France.
J Cogn Neurosci. 2010 Dec;22(12):2768-80. doi: 10.1162/jocn.2010.21424.
Spatial frequencies in an image influence visual analysis across a distributed, hierarchically organized brain network. Low spatial frequency (LSF) information may rapidly reach high-order areas to allow an initial coarse parsing of the visual scene, which could then be "retroinjected" through feedback into lower level visual areas to guide finer analysis on the basis of high spatial frequency (HSF). To test this "coarse-to-fine" processing scheme and to identify its neural substrates in the human brain, we presented sequences of two spatial-frequency-filtered scenes in rapid succession (LSF followed by HSF or vice versa) during fMRI and ERPs in the same participants. We show that for low-to-high sequences (but not for high-to-low sequences), LSF produces a first increase of activity in prefrontal and temporo-parietal areas, followed by enhanced responses to HSF in primary visual cortex. This pattern is consistent with retroactive influences on low-level areas that process HSF after initial activation of higher order areas by LSF.
图像中的空间频率会影响分布式、层次化大脑网络中的视觉分析。低空间频率(LSF)信息可能会迅速到达高级区域,从而对视觉场景进行初步的粗略分析,然后通过反馈将其“反向注入”到较低的视觉区域,以便基于高空间频率(HSF)进行更精细的分析。为了测试这种“从粗到细”的处理方案,并确定其在人类大脑中的神经基础,我们在相同的参与者中使用 fMRI 和 ERP 技术,快速呈现连续的两个空间频率滤波场景序列(LSF 之后是 HSF 或反之亦然)。我们发现,对于低至高序列(但不是高至低序列),LSF 首先在前额叶和颞顶叶区域引起活动增加,然后在初级视觉皮层中对 HSF 的反应增强。这种模式与对处理 HSF 的低层次区域的反向影响一致,即 LSF 首先激活高级区域,然后再对 HSF 进行处理。