Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain.
Dev Comp Immunol. 2010 May;34(5):546-52. doi: 10.1016/j.dci.2009.12.015. Epub 2010 Jan 7.
Interferons (IFNs) and their receptors exist in all classes of vertebrates, where they represent early elements in innate and adaptive immunity. Both types I and II IFNs have been discovered in fish and type I IFN has recently been classified into two groups based on their primary protein sequences and biological activities. Thus, although groups I and II zebrafish IFN show powerful antiviral activities, only group I (IFNphi1) is able to protect the fish against bacterial infection. In addition, group II IFNs (IFNphi2 and IFNphi3) induce a rapid and transient expression of antiviral genes, while group I IFN exerts a slow but more powerful induction of several antiviral and pro-inflammatory genes. To gain further insight into the IFN system of fish, we have developed a waterborne infection model of zebrafish larvae with the spring viremia of carp virus (SVCV). Larvae were challenged 3 days post-fertilization by immersion, which considerably reduces the manipulation of fish and represents a more natural route of infection. Using this infection model, we unexpectedly found an inability on the part of zebrafish larvae to mount a protecting antiviral response to waterborne SVCV. Nevertheless, zebrafish larvae showed a functional antiviral system since ectopic expression of the cDNA of both groups I and II IFN was able to protect them against SVCV via the induction of IFN-stimulated genes (ISGs). Interestingly, group II IFNs also induced group I IFN, suggesting crosstalk between these two kinds of antiviral IFN. These results further confirm the antiviral activities of type I IFN in the zebrafish and provide the first viral infection model for zebrafish larvae using a natural route of infection. This model, in combination with the powerful gene overexpression and morpholino-mediated knockdown techniques, will help to illuminate the IFN system of teleost fish.
干扰素 (IFNs) 和它们的受体存在于所有脊椎动物中,是先天免疫和适应性免疫的早期组成部分。鱼类中发现了 I 型和 II 型干扰素,最近根据其主要蛋白质序列和生物学活性将 I 型 IFN 分为两类。因此,尽管斑马鱼 I 型和 II 型 IFN 都具有强大的抗病毒活性,但只有 I 型(IFNphi1)能够保护鱼类免受细菌感染。此外,II 型 IFN(IFNphi2 和 IFNphi3)诱导抗病毒基因的快速和短暂表达,而 I 型 IFN 则缓慢但更有力地诱导几种抗病毒和促炎基因的表达。为了更深入地了解鱼类的 IFN 系统,我们开发了一种基于水传播的斑马鱼幼虫感染模型,使用鲤鱼春病毒血症病毒(SVCV)进行感染。幼虫在受精后 3 天通过浸泡进行挑战,这大大减少了对鱼的操作,代表了一种更自然的感染途径。使用这种感染模型,我们出人意料地发现斑马鱼幼虫无法对水传播的 SVCV 产生保护性的抗病毒反应。然而,斑马鱼幼虫表现出功能性的抗病毒系统,因为 I 型和 II 型 IFN 的 cDNA 的异位表达能够通过诱导 IFN 刺激基因(ISGs)来保护它们免受 SVCV 的侵害。有趣的是,II 型 IFN 也诱导了 I 型 IFN,表明这两种抗病毒 IFN 之间存在串扰。这些结果进一步证实了 I 型 IFN 在斑马鱼中的抗病毒活性,并为使用自然感染途径的斑马鱼幼虫提供了第一个病毒感染模型。该模型与强大的基因过表达和基于 morpholino 的基因敲低技术相结合,将有助于阐明硬骨鱼类的 IFN 系统。