Suppr超能文献

采用基于高效液相色谱-紫外的代谢组学平台的草药提取物简单质量评估方法。

Simple quality assessment approach for herbal extracts using high performance liquid chromatography-UV based metabolomics platform.

机构信息

Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, No 17, Section 3, Renminnan Road, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China.

出版信息

J Chromatogr A. 2010 Feb 19;1217(8):1414-8. doi: 10.1016/j.chroma.2009.12.031. Epub 2009 Dec 16.

Abstract

A lack of adequate or accepted research methodology has been a major obstacle to study herbal medicines. In this study, instead of the prevalent hyphenated chromatographies, common high performance liquid chromatography equipped with ultraviolet detector (HPLC-UV) and multivariate statistical analysis were utilized to assess the qualities of total flavones of sea buckthorn (TFS), an 85% ethanol extract of the sea buckthorn berries. Two complementary HPLC-UV methods were developed, validated and combined to comprehensively determine the ingredients in TFS. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) of the combined analytical data showed that the six batches of TFS could be well differentiated. Hierarchical cluster analysis (HCA) using Ward's minimum variance method of the PLS-DA loading matrix demonstrated the known ingredients (quercetin, kaempferol, isorhamnetin, oleanolic acid and ursolic acid) and three unknown ingredients in TFS significantly contributed to the quality differences. A PLS regression model indicated that the results of the present method correlated well with the content of total flavones, which is now the quality control approach of TFS. Results from this study indicated that the proposed method is reliable for the quality reassessment of some widely used herbal extracts.

摘要

缺乏充分或被认可的研究方法一直是研究草药的主要障碍。在这项研究中,没有采用常见的分段色谱法,而是利用配备紫外检测器的常规高效液相色谱法(HPLC-UV)和多元统计分析来评估沙棘总黄酮(TFS)的质量,TFS 是沙棘浆果的 85%乙醇提取物。开发了两种互补的 HPLC-UV 方法,并对其进行了验证和组合,以全面确定 TFS 中的成分。组合分析数据的主成分分析(PCA)和偏最小二乘判别分析(PLS-DA)表明,六批 TFS 可以很好地区分。基于 PLS-DA 载荷矩阵的 Ward 最小方差法的层次聚类分析(HCA)表明,TFS 中的已知成分(槲皮素、山柰酚、异鼠李素、齐墩果酸和熊果酸)和三个未知成分显著导致了质量差异。PLS 回归模型表明,本方法的结果与总黄酮的含量密切相关,这是 TFS 的质量控制方法。研究结果表明,该方法可用于对一些广泛使用的草药提取物进行质量评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验