Biosciences Division, Los Alamos National Laboratory, M888, TA 43, HRL-2, Los Alamos, NM 87545, USA.
Toxicol Appl Pharmacol. 2010 Apr 15;244(2):130-43. doi: 10.1016/j.taap.2009.12.025. Epub 2010 Jan 4.
Engineered fullerenes (C(60)) are extensively used for commercial and clinical applications based on their unique physicochemical properties. Such materials have also been recognized as byproducts of many industrial activities. Functionalization of C(60) may significantly influence the nature of its interactions with biological systems, impacting its applications and raising uncertainties about its health effects. In the present study, we compared the bioimpact of two chemically modified fullerene derivatives, hexa carboxyl fullerene adduct (Hexa-C(60)) and tris carboxyl fullerene adduct (tris-C(60)) to pristine fullerene C(60) encapsulated with gamma (gamma)-cyclodextrin C(60) (CD-C(60)), using human cutaneous epithelial cells (HEK) to simulate possible applications and occupational dermal exposure route. We report, for the first time, the discovery of premature senescence as a potential endpoint of nanomaterial elicited biological effects, providing a new paradigm for nanoparticle-induced toxicity in human cells. Moreover, this response appeared to be functionalization specific, in that, only tris-C(60) induced senescence. We investigated key biological responses, such as cellular viability, intracellular ROS generation, cell proliferation and cell cycle responses. Our results indicate that the often observed 'anti-apoptotic' function of fullerene derivatives may be independent of their 'ROS scavenging' role as previously reported. We discovered that the tris-C(60)-induced responses were associated with G(0)/G(1) cell cycle arrest and cellular senescence. On further evaluation of the molecular mechanisms underlying the senescent response, a significant decrease in the expression levels of HERC5 was noted. HERC5 is a ubiquitin ligase of the HERC family and is implicated to be involved in innate immune responses to viral and bacterial infections.
工程化富勒烯(C(60))因其独特的物理化学性质而被广泛应用于商业和临床应用。这些材料也已被认为是许多工业活动的副产品。C(60)的功能化可能会显著影响其与生物系统相互作用的性质,从而影响其应用,并对其健康影响产生不确定性。在本研究中,我们比较了两种化学修饰的富勒烯衍生物,六羧基富勒烯加合物(Hexa-C(60))和三羧基富勒烯加合物(tris-C(60))与用γ(γ)-环糊精 C(60)(CD-C(60))包封的原始富勒烯 C(60)的生物影响,使用人皮肤上皮细胞(HEK)模拟可能的应用和职业皮肤暴露途径。我们首次报道了衰老作为纳米材料引起的生物学效应的潜在终点,为人类细胞中纳米颗粒诱导的毒性提供了新的范例。此外,这种反应似乎是功能化特异性的,因为只有 tris-C(60)诱导衰老。我们研究了关键的生物学反应,如细胞活力、细胞内 ROS 生成、细胞增殖和细胞周期反应。我们的结果表明,富勒烯衍生物的通常观察到的“抗凋亡”功能可能与其先前报道的“ROS 清除”作用无关。我们发现,tris-C(60)诱导的反应与 G(0)/G(1)细胞周期阻滞和细胞衰老有关。在进一步评估衰老反应的分子机制时,注意到 HERC5 的表达水平显著下降。HERC5 是 HERC 家族的一种泛素连接酶,被认为参与病毒和细菌感染的固有免疫反应。